Poster Tag: WED-PM-200

RIFormer: Keep Your Vision Backbone Effective but Removing Token Mixer

Jiahao Wang^{1,2}, Songyang Zhang¹, Yong Liu³, Taiqiang Wu³, Yujiu, Yang³, Xihui Liu², Kai Chen¹, Ping Luo², Dahua Lin¹

¹Shanghai AI Laboratory & ²The Chinese University of HongKong & ³Tsinghua Shenzhen International Graduate School, Tsinghua University

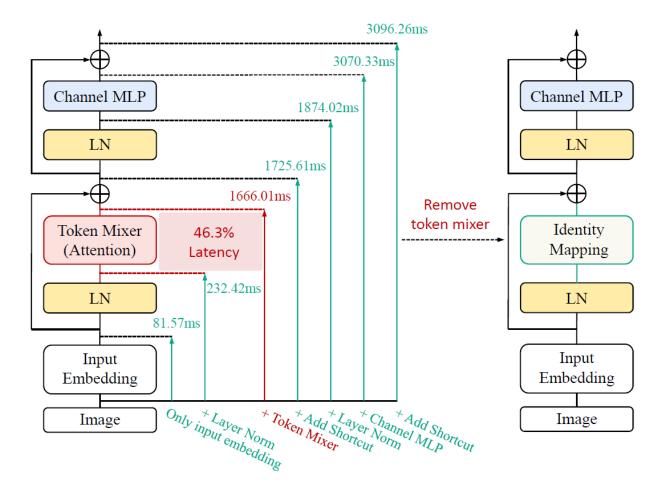
- Overview
- Background
- Motivation
- Advantage of Token Mixer-Free Architecture
- A Roadmap
- Evaluation
- Conclusion

- Overview
- Background
- Motivation
- Advantage of Token Mixer-Free Architecture
- A Roadmap
- Evaluation
- Conclusion

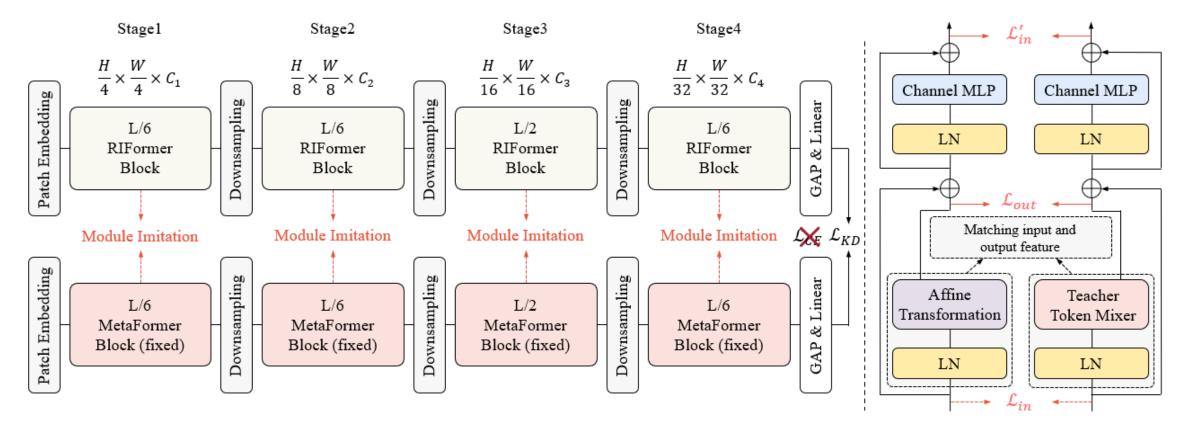
Overview

Summary

- Token mixer in Vision Backbone: Performing information communication between different spatial tokens but suffer from considerable computational cost and latency.
- Efficient Foundation Model: How to keep a vision backbone effective while removing token mixers.
- RIFormer: A token mixer-free model architecture.
- Improved learning paradigm: 5 practical guidelines.



Overview

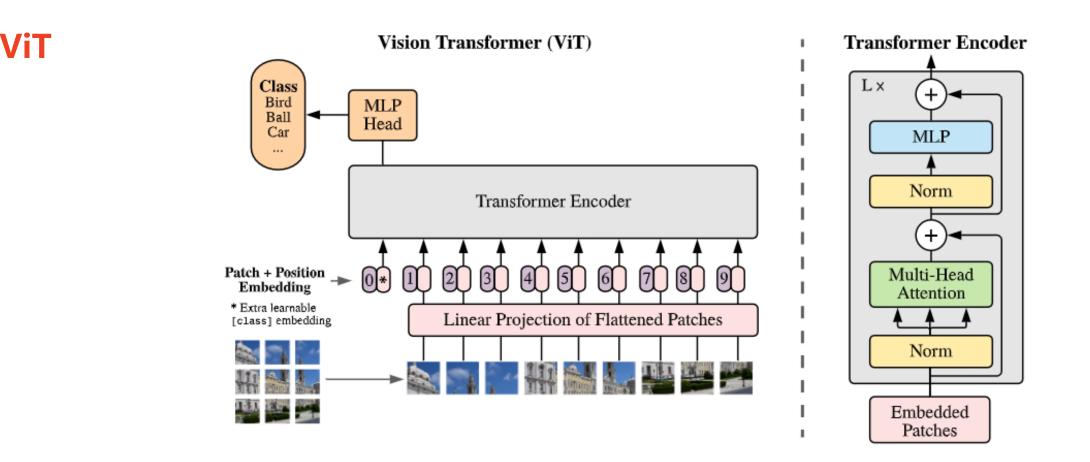


Highlights

- The inductive bias of neural network, can be incorporated into simple network structure with appropriate optimization strategy.
- We hope this work can serve as a starting point for the exploration of optimization-driven efficient network design.

- Overview
- Background
- Motivation
- Advantage of Token Mixer-Free Architecture
- A Roadmap
- Evaluation
- Conclusion

Background



Transformer Encoder as General Vision Backbone + Classification head for various downstream tasks

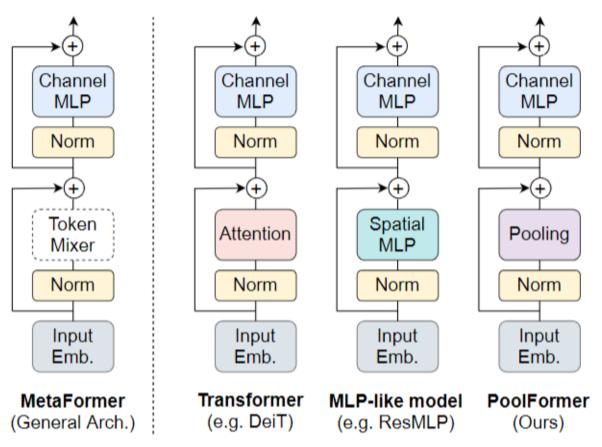
[1] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Background

MetaFormer: An Abstract Architecture of Transformer

- First sub-block: Token Mixer + LN
- Second sub-block: FFN + LN

- Token mixer is not specified to self-attention
- The other components are kept the same as Transformers



- Overview
- Background
- Motivation
- Advantage of Token Mixer-Free Architecture
- A Roadmap
- Evaluation
- Conclusion

Motivation

Token Mixer Can Be Simplified

Attention: Window-Based Attention¹, ...

MLP: Spatial FC², CycleFC³, AMixer⁴, ...

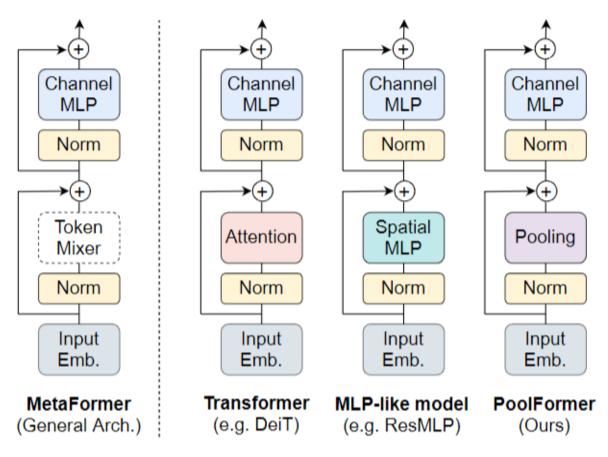
FFT: 2D FFT⁵

Others: Pooling⁶

[1] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[2] ResMLP: Feedforward networks for image classification with data-

efficient training

- [3] CycleMLP: A MLP-Like Architecture for Dense Prediction
- [4] AMixer: Adaptive Weight Mixing for Self-attention Free Vision Transformers
- [5] Global Filter Networks for Image Classification
- [6] MetaFormer Is Actually What You Need for Vision

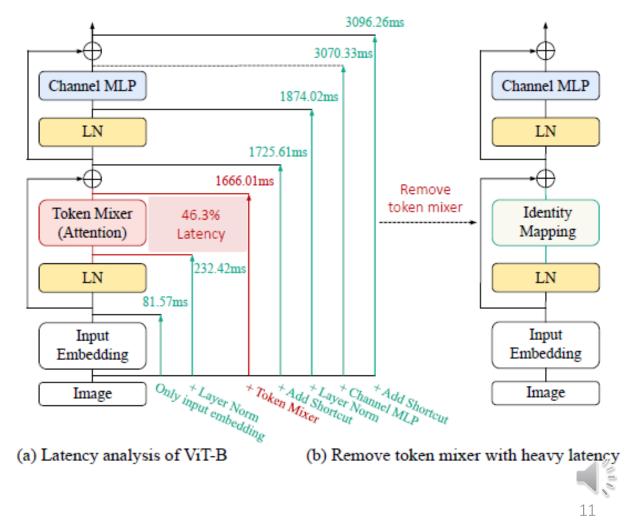


Motivation

Can Token Mixer Be Completely Removed ?

- Token Mixer is heavy in latency
- For self-attention, the latency occupies about 46.3% of the backbone

Can we keep the vision backbone effective but removing the token mixer?



- Overview
- Background
- Motivation

• Advantage of Token Mixer-Free Architecture

- A Roadmap
- Evaluation
- Conclusion

Advantage of Token Mixer-Free Architecture

- Embarrassingly Simple Architecture: 0 Params, 0 FLOPs, 0 Latency in token mixing, and reducing model latency, power consumption and memory usage
- Only one operation, Channel MLP (1×1 Conv): An inference chip specialized for RIFormer can have an
 enormous number of LN-1×1 units, facilitating hardware specialization to achieve even higher speed
 (the fewer types of operators we require, the more computing units we can integrate onto the chip¹)
- Decoupling the Complexity of the Model During Training and Inference:
- Training: Use affine transformation → Enhance representation capability
- Inference: Affine operator can be integrated into the previous $LN \rightarrow Completely$ cut off token mixer
- To the community: Focus more on the overall architecture and training strategy of ViTs-like models, rather than only on the design of the token mixer

[1] RepVGG: Making VGG-style ConvNets Great Again

- Overview
- Background
- Motivation
- Advantage of Token Mixer-Free Architecture
- A Roadmap
- Evaluation
- Conclusion

From a Fully Supervised Approach to a More Advanced Paradigm

Step1: Directly Train a Vision Backbone Without Token Mixer

- Baseline: PoolFormer¹
- Dataset: ImageNet-1K
- Epoch: 120
- Optimizer: AdamW

Token Mixer	Training recipe	ImageNet top-1 acc (%)
Pooling	CE Loss	75.01
Identity	CE Loss	72.31

Trivial supervised training can lead to an unacceptable performance drop (2.7% top-1 accuracy)

We need more advanced training procedure

[1] MetaFormer Is Actually What You Need for Vision

From a Fully Supervised Approach to a More Advanced Paradigm

Step2: Knowledge Distillation

Hard distillation or Soft distillation ?

- RIFormer shares the same macro structure as transformer
- Cannot be treated as a student transformer as no self-attention
- Do not prefer viewing it as a pure convnet
- Resemblance to transformer in terms of macro/micro-level architecture design

Use Cross Entropy Loss or not?

- Label smoothing: hard label $\rightarrow 1 - \varepsilon$ true label + ε uniform distribution
- 1×1 convolutions dominate basic building block in RIFormer, such a simplified design require richer information in the supervised labels

From a Fully Supervised Approach to a More Advanced Paradigm

Step2: Knowledge Distillation

	TM	Label	Teacher	ImageNet top-1 acc (%)
• Teacher: GFNet-H-B ¹	Identity	1	×	72.31
 Dataset: ImageNet-1K 	Identity	1	hard	73.51
• Epoch: 120	Identity	×	hard	72.86
Optimizer: AdamW	Identity	1	soft	73.64
•	Identity	×	soft	74.05

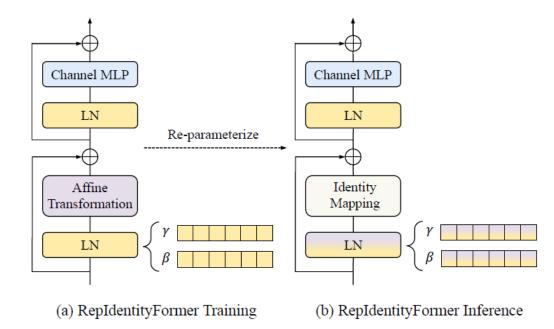
Supervised Training + Hard Distillation (DeiT²) does not seem to be the most suitable way for a crude model without token mixer

Pure Soft Distillation (Optimal) still fails to fully recover the performance gap

[1] Global Filter Networks for Image Classification[2] Training data-efficient image transformers & distillation through attention

From a Fully Supervised Approach to a More Advanced Paradigm

Step3: Structural Re-parameterization



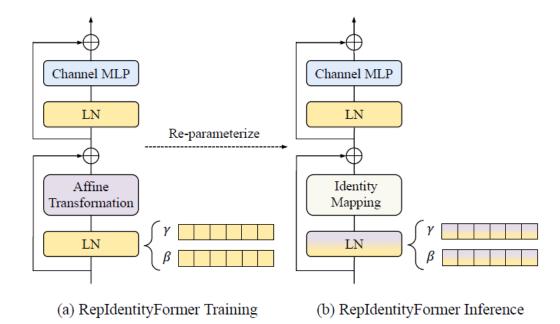
Training-time module should satisfy:

- 1. per-location operator for allowing equivalent transformation
- 2. parametric operator for allowing extra representation ability

We choose the affine transformation

From a Fully Supervised Approach to a More Advanced Paradigm

Step3: Structural Re-parameterization



TM	Label	KD type	ImageNet top-1 acc (%)
Affine	✓	×	72.25
Affine	1	hard	73.44
Affine	×	hard	72.77
Affine	1	soft	72.10
Affine	×	soft	74.07

Using affine transformation without tailored distillation, is hard to recover the performance degradation

The affine transformation in the LN is a linear transformation that can be directly merged with the extra affine operator we introduced

19

From a Fully Supervised Approach to a More Advanced Paradigm

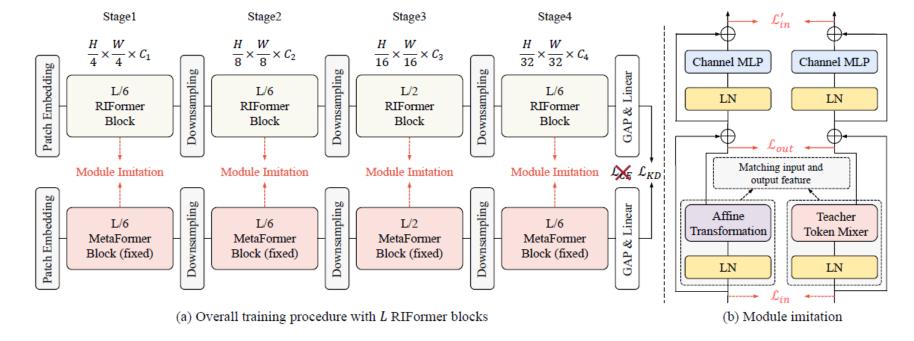
Step4: Module Imitation: let the affine module to approximate the behavior of the token mixer module

$$\mathcal{L} = \mathcal{L}_{soft} + \lambda_1 \mathcal{L}'_{in} + \lambda_2 \mathcal{L}_{out} + \lambda_3 \mathcal{L}_{rel},$$

- Teacher (out): GFNet-H-B
- Teacher (feature): PoolFormer-S12

20

- Dataset: ImageNet-1K
- Epoch: 120



From a Fully Supervised Approach to a More Advanced Paradigm

Step4: Module Imitation: let the affine module to approximate the behavior of the token mixer module

 Module imitation, helps leveraging the modeling capacity of affine operator, by helping the affine operator implicitly benefit from the supervision of the teacher' s token mixer

TM	Feat	Rel	Layer	ImageNet top-1 acc (%)
Affine	0	0	-	74.07
Affine	40	0	6	74.49
Affine	60	0	6	74.77
Affine	80	0	6	74.81
Affine	80	10	6	75.08
Affine	80	20	6	74.82
Affine	80	40	6	75.00
Affine	80	20	4	75.13

From a Fully Supervised Approach to a More Advanced Paradigm

Step5: What Kind of Teacher is Better for the Token Mixer-Free Architecture ?

- Teacher with large receptive field is beneficial to improve student with limited receptive field
- Receptive field gap between teacher and student: inductive bias can be transferred from one model to another through distillation¹

Teacher (T)	T.acc (%)	MI	ImageNet
reacher (1)	1.acc (70)	IVII	top-1 acc (%)
PoolFormer-M48 [52]	82.5	X	73.63
Swin-B* [26]	85.2	×	73.12
Pyramid ViG-B [15]	83.7	×	73.25
GFNet-H-B [34]	82.9	X	74.07
PoolFormer-M48 [52]	82.5	1	74.83
Swin-B* [26]	85.2	✓	74.52
Pyramid ViG-B [15]	83.7	✓	74.25
GFNet-H-B [34]	82.9	1	75.13

From a Fully Supervised Approach to a More Advanced Paradigm

Step6: Load Partial Parameters From Teacher

- w/o loading the pre-trained weight of teacher model: 75.13%
- w/ loading the pre-trained weight of teacher model: 75.36%
- Dataset: ImageNet-1K
- Epoch: 120
- Load the pre-trained weight of teacher model (except the token mixer) into student improve the convergence and performance

- Overview
- Background
- Motivation
- Advantage of Token Mixer-Free Architecture
- A Roadmap
- Evaluation
- Conclusion

Evaluation

ImageNet-1K Evaluation

- Favorable speed advantage is achieved
- RIFormer shows promising results
- Optimization strategy plays a key role

Token Mixer	Outcome Model	Image Size	Params (M)	MACs (G)	Throughput (images/s)	Top-1 (%
	V RSB-ResNet-34 [17,49]	224	22	3.7	6653.75	75.5
Convolution	V RSB-ResNet-50 [17,49]	224	26	4.1	2732.85	79.8
Convolution		224	45	7.9	1856.48	81.3
	RSB-ResNet-152 [17,49]	224	60	11.6	1308.26	81.8
	▲ DeiT-S [43]	224	22	4.6	3092.02	79.8
	▲ DeiT-B [43]	224	86	17.5	1348.76	81.8
Attention	PVT-Small [48]	224	25	3.8	1622.53	79.8
	PVT-Medium [48]	224	44	6.7	1190.48	81.2
	PVT-Large [48]	224	61	9.8	865.33	81.7
	MLP-Mixer-B/16 [41]	224	59	12.7	1855.45	76.4
	ResMLP-S24 [42]	224	30	6.0	3228.75	79.4
Spatial MLP	ResMLP-B24 [42]	224	116	23.0	298.94	81.0
	Swin-Mixer-T/D6 [26]	256	23	4.0	1625.59	79.7
	Swin-Mixer-B/D24 [26]	224	61	10.4	1131.60	81.3
	GFNet-H-Ti [34]	224	15	2.1	1979.56	80.1
2D FFT	GFNet-H-S [34]	224	32	4.6	1434.19	81.5
2D FF1	GFNet-B [34]	224	43	7.9	1771.07	80.7
	GFNet-H-B [34]	224	54	8.6	939.20	82.9
	PoolFormer-S12 [52]	224	12	1.8	4160.18	77.2
	PoolFormer-S24 [52]	224	21	3.4	2140.20	80.3
Pooling	PoolFormer-S36 [52]	224	31	5.0	1440.37	81.4
	PoolFormer-M36 [52]	224	56	8.8	1009.45	82.1
	PoolFormer-M48 [52]	224	73	11.6	761.93	82.5
	★ RIFormer-S12 [°]	224	12	1.8	4899.80 (†17.8%)	76.9
	★ RIFormer-S24 [°]	224	21	3.4	2530.48 (†18.2%)	80.3
	★ RIFormer-S36 [°]	224	31	5.0	1699.94 (†18.0%)	81.3
	★ RIFormer-M36 ^o	224	56	8.8	1185.33 (†17.4%)	82.6
None	★ RIFormer-M48 [°]	224	73	11.6	897.05 († 17.7%)	82.8
None	★ RIFormer-S12 [‡]	384	12	5.4	1586.51	78.3
	★ RIFormer-S24 [‡]	384	21	10.0	819.40	81.4
	★ RIFormer-S36 [‡]	384	31	14.7	552.07	82.2
	★ RIFormer-M36 [‡]	384	56	25.9	403.15	83.4
	★ RIFormer-M48 [‡]	384	73	34.1	304.43	83.7

Evaluation

Ablation Study

1) Effectiveness of module imitation

2) Comparisons of different acceleration strategies

Token Mixer	Feature distillation scheme	Top-1 (%)
Identity	None	74.05
Identity	Feature distill	74.90
Affine	Module imitation	75.36

• The accuracy of feature distillation is 0.46% lower than that of module imitation

Model	Туре	Throughput	Top-1 (%)
PoolFormer-S12	None	4160.18	75.01
PoolFormer-S9	Depth	5025.71	74.78
PoolFormer-XS12	Width	4780.28	75.11
RIFormer-S12	TM	4899.80	75.36

• Directly pruning depths or width cannot render a better performance than ours without latency-hungry token mixer

Evaluation

Ablation Study

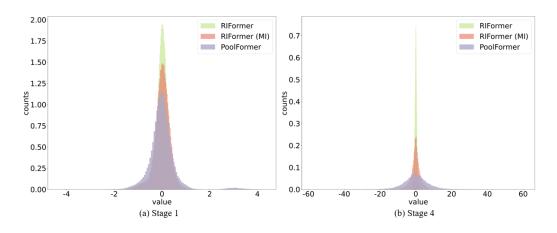
3) Generalization to different teachers

Token Mixer	Teacher	Top-1 (%)
Affine (12 layers)	None	72.75
Affine (12 layers)	RandFormer-S12 [53]	75.62
Affine (12 layers)	PoolFormer V2-S12 [53]	75.87
Affine (18 layers)	None	75.01
Affine (18 layers)	ConvFormer-S18 [53]	77.53
Affine (18 layers)	CAFormer-S18 [53]	77.26

Rand matrices, Pooling, Separable Depthwise Convolution, Attention

• Module imitation has a positive effect in different depth setting and teachers

4) Module imitation (MI) shifts the feature distribution of the RIFormer model to be closer to the teacher



- PoolFomer-S12 and RIFormer-S12 show a clear difference in feature distribution.
- The distribution of RIFormer-S12 are basically shifted toward that of the PoolFomer-S12 by module imitation

- Overview
- Background
- Motivation
- Advantage of Token Mixer-Free Architecture
- A Roadmap
- Evaluation
- Conclusion

Conclusion

• We propose to explore the vision backbone by developing advanced learning paradigm for simple model architecture, to satisfy the demand of realistic application.

• We instantiate the re-parameterizing idea to build a token mixer free vision model, RIFormer, which owns the improved modeling capacity for the inductive bias while enjoying the efficiency during inference.

• Our proposed practical guidelines of distillation strategy has been demonstrated effective in keeping the vision backbone competitive but removing the token mixer.

https://techmonsterwang.github.io/RIFormer/

https://github.com/open-mmlab/MMPreTrain

