

Chun-Mei Feng¹, Bangjun Li², Xinxing Xu¹, Yong Liu¹, Huazhu Fu¹, Wangmeng Zuo³

¹Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore; ²Shangdong University, China; ³Harbin Institute of Technology, Harbin, China; strawberry.feng0304@gmail.com; https://github.com/chunmeifeng/FedPR

Goals: To facilitate multi-institutional collaborations between data centers. Allowing *collaborative and decentralized training* of deep learning-based methods.

A classical FL method, **FedAvg**, **first** receives global model parameters from the server and initializes the client model parameters. **Then**, each client trains model locally on private data and sends the local model to the server. **Finally**, the server aggregates the local updates and further updates the global model by averaging the parameters which will be **sent back** to each client **in the next round**.

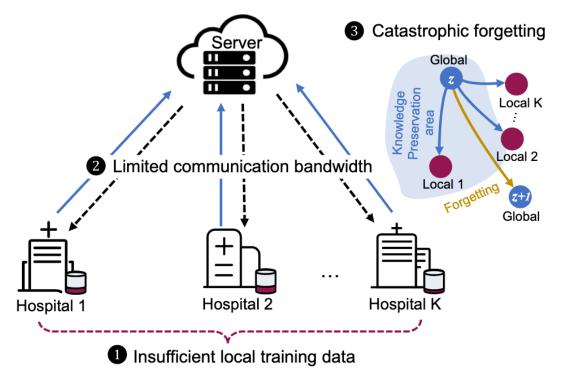
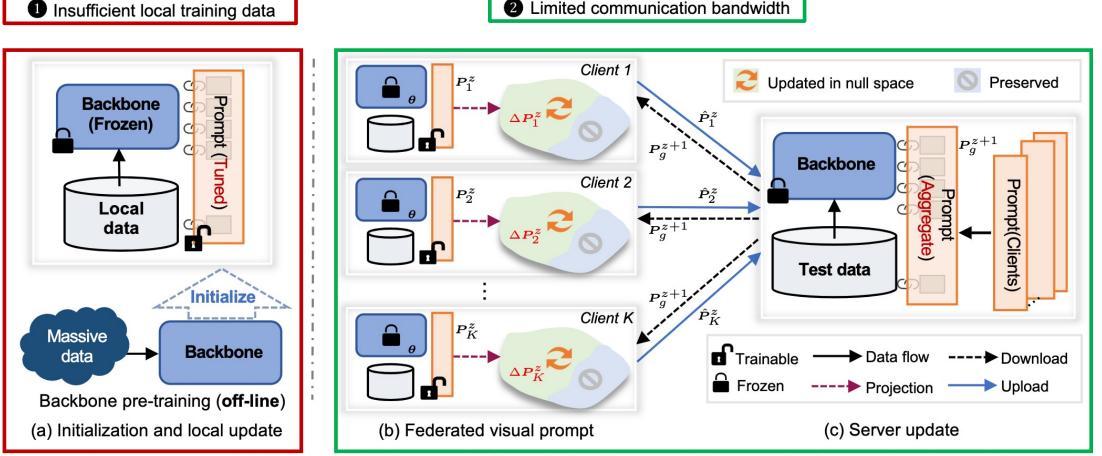



Figure 1. Illustration of the three key issues in federated MRI.

Learning Federated Visual Prompt in Null Space for MRI Reconstruction

2 Limited communication bandwidth

Figure 2. Illustration of our FedPR method. (a) For each client, the backbone model is pre-trained on massive data and fine-tuned via prompt (see Sec. 3.2). (b) *Federated visual prompt* is executed by updating the local prompt of each client only in the approximate null space of global prompts while preserving the *previously* acquired global knowledge (see Sec. 3.3). (c) Server update by aggregating local prompts.

Learning Federated Visual Prompt in Null Space for MRI Reconstruction

3 Catastrophic forgetting

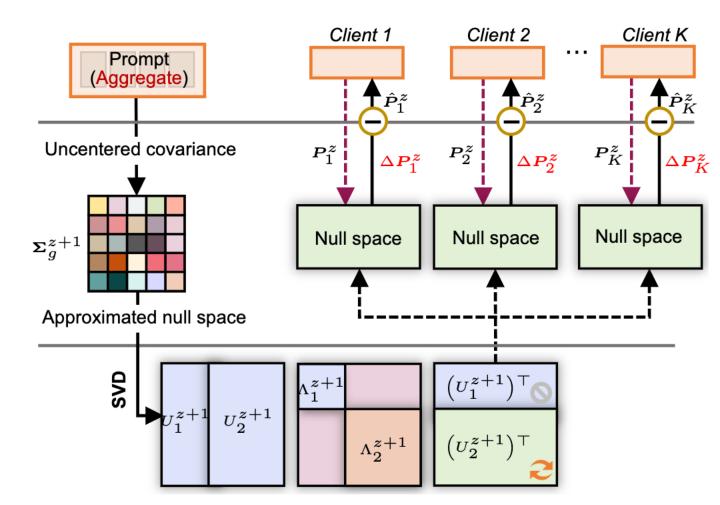
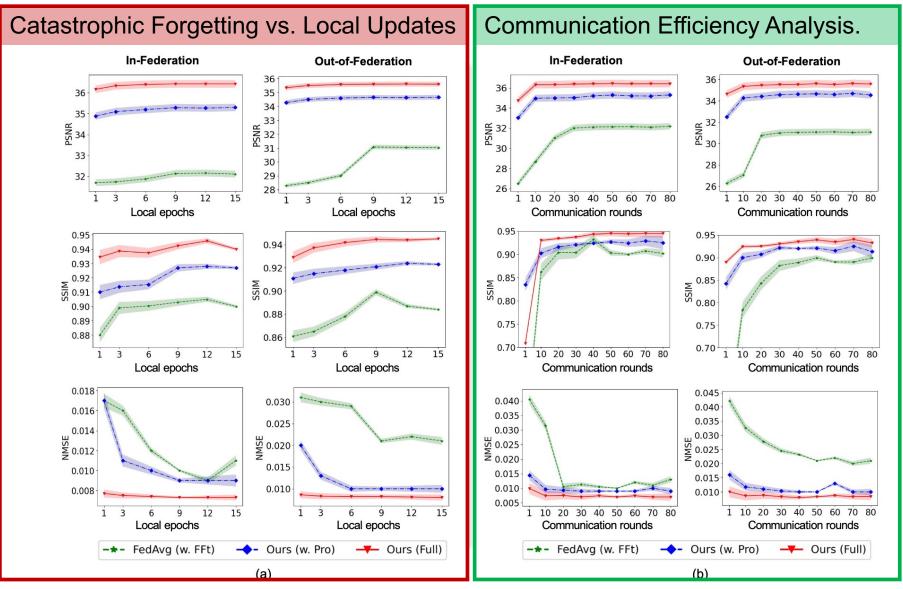


Figure 3. **Illustration** of **federated visual prompt** for updating local prompts in the null space of global prompts.


```
Algorithm 1: FedPR
    Input: Private datasets from K clients:
               \mathcal{D}^1, \mathcal{D}^2, \ldots, \mathcal{D}^K, local updates T,
               communication rounds Z, pre-trained model
               parameters \theta, prompt embeddings P,
               learning rate \eta, hyperparameter \gamma;
 1 // ServerExecution:
 2 Initialize global prompt P_a with parameters \theta.
 3 for each communication round z \in \{1, 2, ..., Z\} do
         for each client k \in \{1, 2, ... K\} in parallel do
 4
               P_k^z \leftarrow P_a^z;
 5
               \hat{P}_{k}^{z} \leftarrow \text{LocalUpdate}(k, P_{k}^{z});
 6
 7
          end
         P_g^{z+1} \leftarrow \sum_{k=1}^{K} \frac{|\mathcal{D}^k|}{|\mathcal{D}|} \hat{P}_k^z;
 8
         Compute the uncentered covariance matrix:
 9
         oldsymbol{\Sigma}_{q}^{z+1} = ig(oldsymbol{P}_{q}^{z+1}ig)^{	op}oldsymbol{P}_{q}^{z+1};
10
         Approximate the null space of \Sigma_{q}^{z+1}:
11
         \Sigma_{g}^{z+1} = U^{z+1} \Lambda^{z+1} (U^{z+1})^{\top};
12
          Select the smallest diagonal singular values of
13
           \Lambda_2^{z+1} with the ratio of \gamma;
          Get U_2^{z+1} corresponding to \Lambda_2^{z+1}.
14
15 end
16 return P_a^{z+1}
17 // LocalUpdate (k, P_k):
18 for each local epoch t \in \{1, 2, ... T\} do
         Get the updated parameters \Delta P_k^z:
19
         \Delta oldsymbol{P}_k^z = oldsymbol{U}_2^{z+1} \, oldsymbol{(U}_2^{z+1})^	op oldsymbol{P}_k^z;
20
         \hat{P}_{k}^{z,t+1} \leftarrow P_{k}^{z,t} - \eta_{k} \Delta P_{k}^{z,t};
21
22 end
23 return \hat{P}_{k}^{z}
```


Table 1. Quantitative comparison of state-of-the-art FL methods with regard to In-Federation and Out-of-Federation scenarios, where # Com.cost is the communication cost, Ub indicates the upper-bound of FL algorithms, \uparrow and \downarrow indicate increments and decrements compared with FedAvg (w. FFt). Detailed analyses are provided in Sec. 4.2.


		In-Federation			Out-of-Federation		
Method	# Com.cost	PSNR	SSIM	NMSE	PSNR	SSIM	NMSE
SingleSet	18.43 M	28.79 (3.35) ↓	0.805(0.099)↓	0.021 (0.011) ↓	28.92 (2.15) ↓	0.808(0.091)↓	0.032(0.011) ↓
Centralized (Ub)	18.43 M	36.71 (4.57) ↑	0.947 (0.044)↑	0.009 (0.005) ↑	35.73(4.66)↑	0.940 (0.041)↑	0.008 (0.013) ↑
FedAvg (w. FFt) [22]	18.43 M	32.14(0.00)	0.903(0.000)	0.010(0.000)	31.07(0.00)	0.899(0.000)	0.021(0.000)
FedBN [18]	18.69 M	28.31(3.83)↓	0.817(0.086)↓	0.044 (0.034)↓	25.65(5.42)↓	0.731 (0.186)↓	0.080(0.059)↓
FedProx [17]	18.43 M	32.84(0.70)	0.901 (0.002)↑	0.010(0.000)	31.98 (0.91)↑	0.905 (0.006) ↑	0.018 (0.003) ↑
SCAFFOLD [12]	18.43 M	33.08(0.94)	0.914 (0.010) ↑	0.009 (0.001) ↑	32.20 (1.13) ↑	0.915 (0.016)↑	0.018 (0.003) ↑
MOON [16]	18.43 M	$\textbf{34.06}(1.92) \uparrow$	0.927 (0.023)↑	0.008 (0.002) ↑	31.16(0.09)↑	0.907 (0.008) ↑	0.023(0.002)↓
FedReg [35]	18.43 M	33.29 (1.15) ↑	0.890 (0.013) ↑	0.009 (0.001) ↑	32.41(1.34)↑	0.907 (0.008) ↑	0.017 (0.004) ↑
FL-MRCM [9]	18.43 M	33.60 (1.46) ↑	0.922 (0.019)↑	0.013(0.003)↓	32.72(1.65)↑	0.911 (0.012)↑	0.016 (0.005) ↑
FedMRI [7]	17.46 M	$\textbf{33.35}(1.21) \uparrow$	0.923(0.020)↑	0.014(0.004)↓	32.00 (0.93) ↑	0.914 (0.015) ↑	0.019 (0.002) ↑
Ours (w. Pro)	0.11 M	35.29 (3.15) ↑	0.927 (0.024) ↑	0.009 (0.001) ↑	34.65 (3.58)↑	0.921 (0.022) ↑	0.010 (0.011) ↑
Ours (Full)	0.11 M	$\textbf{36.43}(\underline{4.30}) \uparrow$	$\textbf{0.945} (\underline{0.042}) \uparrow$	0.007 (<u>0.003</u>) ↑	$\textbf{35.60}(\underline{4.53}) \uparrow$	0.939 (<u>0.040</u>) ↑	0.008 (<u>0.013</u>) ↑

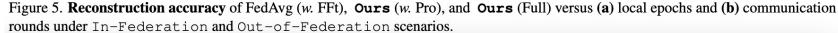


Figure 4. **Qualitative comparison** of different algorithms in terms of reconstruction images and error maps with corresponding quantitative measurements in PSNR/SSIM under In-Federation and Out-of-Federation scenarios. The less texture in the error map, the better reconstruction quality.

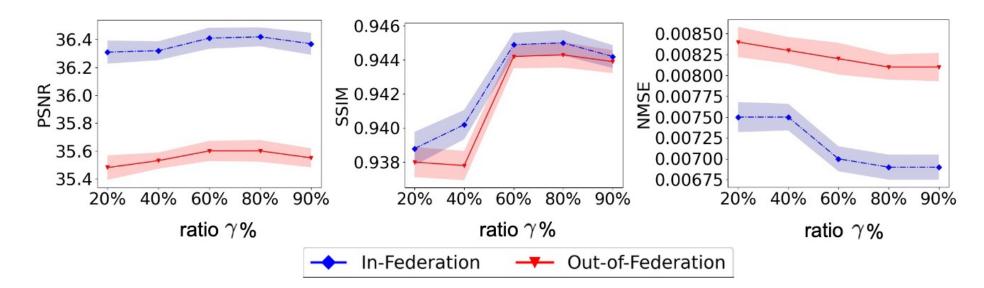


Figure 6. Analysis of the **ratio** γ % of the approximate null space in terms of PSNR, SSIM, and NMSE.

Thanks!