

Learning Attention as Disentangler for Compositional Zero-shot Learning

Shaozhe Hao, Kai Han, Kwan-Yee K. Wong

The University of Hong Kong

WED-PM-282

Compositional Zero-shot Learning (CZSL)

Seen Compositions

Quick Overview

Baseline

learn attribute + object by cross entropy

Quick Overview

Baseline

learn attribute + object by cross entropy

$$\mathcal{L}_{ce} = \underbrace{H_{\pi_a}(v_a, a)}_{\mathcal{L}_{attr}} + \underbrace{H_{\pi_a}(v'_a, a)}_{\mathcal{L}'_{attr}} + \underbrace{H_{\pi_c}(v_c, c)}_{\mathcal{L}_{com}} + \underbrace{H_{\pi_o}(v_o, o)}_{\mathcal{L}'_{obj}} + \underbrace{H_{\pi_o}(v'_o, o)}_{\mathcal{L}'_{obj}}$$

Cross-attention with query-key swapping (QKS)

Earth moving distance (EMD)

 $\begin{array}{ll} \underset{f_{ij}}{\text{minimize}} & \sum_{i=1}^{n_s} \sum_{j=1}^{n_d} c_{ij} f_{ij} \\ \text{subject to} & f_{ij} \ge 0, \ i = 1, ..., n_s, \ j = 1, ..., n_d \\ & \sum_{j=1}^{n_d} f_{ij} = s_i, \ i = 1, ..., n_s \\ & \sum_{i=1}^{n_s} f_{ij} = d_j, \ j = 1, ..., n_d \end{array}$ $\begin{array}{l} \text{EMD}(c_{ij}, s_i, d_j) = (1 - c_{ij}) \tilde{f}_{ij}. \end{array}$

Greater EMD, **Closer** distributions, **More focused** on the concept

Earth moving distance (EMD)

$$\begin{array}{ll} \underset{f_{ij}}{\text{minimize}} & \sum_{i=1}^{n_s} \sum_{j=1}^{n_d} c_{ij} f_{ij} \\ \text{subject to} & f_{ij} \ge 0, \ i = 1, ..., n_s, \ j = 1, ..., n_s \\ & \sum_{j=1}^{n_d} f_{ij} = s_i, \ i = 1, ..., n_s \\ & \sum_{i=1}^{n_s} f_{ij} = d_j, \ j = 1, ..., n_d \end{array}$$
$$\begin{array}{l} \text{EMD}(c_{ij}, s_i, d_j) = (1 - c_{ij}) \widetilde{f}_{ij}. \end{array}$$

Greater EMD, **Closer** distributions, **More focused** on the concept

Earth moving distance (EMD) 2 [CLS] Matmul $\underset{f_{ij}}{\text{minimize}} \quad \sum\nolimits_{i=1}^{n_s} \sum\nolimits_{j=1}^{n_d} c_{ij} f_{ij}$ $[CLS] \rightarrow$ attention subject to $f_{ij} \ge 0, i = 1, ..., n_s, j = 1, ..., n_d$ SoftMax $\sum_{j=1}^{n_d} f_{ij} = s_i, \; i = 1, ..., n_s$ Scale $\sum_{i=1}^{n_s} f_{ij} = d_j, \; j = 1,...,n_d$ $(\blacksquare)^T + \blacksquare$ Matmul 2 $\text{EMD}(c_{ij}, s_i, d_j) = (1 - c_{ij}) \tilde{f}_{ij}.$ Linear Linear Linear 0 . . EMD(1 -

 $\overline{S_i}$ $\overline{d_i}$

 C_{ii}

Greater EMD, **Closer** distributions, More focused on the concept

Training and Inference

Training objective

$$\mathcal{L} = \mathcal{L}_{ce} + \mathcal{L}_{reg}$$

Inference: score tuning

$$\hat{c} = \underset{c \in \mathcal{C}_{test}}{\arg \max} \ p(c) + \beta \cdot p(a) \cdot p(o)$$

choose the best β on the validation set

Comparison with SOTA methods

Closed-world evaluation

Closed-world	Clothing16K							UT-Zappos50K						C-GQA					
Models	AUC	HM	Seen	Unseen	Attr	Obj	AUC	HM	Seen	Unseen	Attr	Obj	AUC	HM	Seen	Unseen	Attr	Obj	
SymNet [22]	78.8	79.3	98.0	85.1	75.6	84.1	32.6	45.6	60.6	68.6	48.2	77.0	3.1	13.5	30.9	13.3	11.4	34.6	
CompCos [24]	90.3	87.2	98.5	96.8	90.2	91.8	31.8	48.1	58.8	63.8	45.5	72.4	2.9	12.8	30.7	12.2	10.4	33.9	
GraphEmb [29]	89.2	84.2	98.0	97.4	90.0	93.1	34.5	48.5	61.6	70.0	50.8	77.1	3.8	15.0	32.3	14.9	13.8	33.2	
Co-CGE [25]	88.3	87.9	98.5	94.7	87.4	91.4	30.8	44.6	60.9	62.6	46.0	73.5	3.6	14.7	31.6	14.3	12.6	34.6	
SCEN [21]	78.8	78.5	98.0	89.6	81.2	85.4	30.9	46.7	65.7	62.9	44.0	74.4	3.5	14.6	31.7	13.4	10.7	31.4	
IVR [50]	90.6	86.6	99.0	97.0	89.3	93.6	34.3	49.2	61.5	68.1	48.4	74.6	2.2	10.9	27.3	10.0	10.3	37.5	
OADis [41]	88.4	86.1	97.7	94.2	84.9	93.1	32.6	46.9	60.7	68.8	49.3	76.9	3.8	14.7	33.4	14.3	8.9	36.3	
ADE (ours)	92.4	88.7	98.2	97.7	90.2	93.6	35.1	51.1	63.0	64.3	46.3	74.0	5.2	18.0	35.0	17.7	16.8	32.3	

Evaluate on a predefined composition subset

Comparison with SOTA methods

Open-world evaluation

Open-world	Clothing16K						UT-Zappos50K						C-GQA						
Models	AUC	HM	Seen	Unseen	Attr	Obj	AUC	HM	Seen	Unseen	Attr	Obj	AUC	HM	Seen	Unseen	Attr	Obj	
SymNet [22]	57.4	68.3	98.2	60.7	57.6	81.2	25.0	40.6	60.4	51.0	38.2	75.0	0.77	4.9	30.1	3.2	18.4	37.5	
CompCos [24]	64.1	70.8	98.2	69.8	71.7	83.7	20.7	36.0	58.1	46.0	36.4	71.1	0.72	4.3	32.8	2.8	15.1	37.8	
GraphEmb [29]	62.0	68.3	98.5	69.7	71.8	82.4	23.5	40.0	60.6	47.0	37.1	69.3	0.81	4.8	32.7	3.2	17.2	36.7	
Co-CGE [25]	59.3	69.2	98.7	63.8	68.5	76.2	22.0	40.3	57.7	43.4	33.9	67.2	0.48	3.3	31.1	2.1	15.5	35.7	
SCEN [21]	53.7	61.5	96.7	62.3	63.6	79.1	22.5	38.0	64.8	47.5	34.9	73.3	0.34	2.5	29.5	1.5	14.8	32.3	
IVR [50]	63.6	72.0	98.7	69.0	70.3	84.8	25.3	42.3	60.7	50.0	38.4	71.4	0.94	5.7	30.6	4.0	16.9	36.5	
OADis [41]	53.4	63.2	98.0	58.6	57.3	85.4	25.3	41.6	58.7	53.9	40.3	74.7	0.71	4.2	33.0	2.6	14.6	39.7	
ADE (ours)	68.0	74.2	99.0	73.1	75.0	84.5	27.1	44.8	62.4	50.7	39.9	71.4	1.42	7.6	35.1	4.8	22.4	35.6	

Evaluate on **all** compositions

Seen-Unseen Accuracy Curve on C-GQA

Applications – Text-to-Image Retrieval

Seen compositions

beige ground wet sand

wet sand

Unseen compositions

Wooden Fence

tall fence

bare tree long dock

in-the-air jet

metal plane

diagonal jet in-the-air plane

Squatting Catcher

man

wearing-gray catching catcher green shirt

playing-baseball man

On-the-wall Picture

framed picture

yellow picture white wall

Applications – Image-to-Text Retrieval

Seen compositions

Multicolored Clothing

Colorful Suit Colorful Clothing Red Suit Multicolored Suit Multicolored Clothing

Rectangular Microwave

Rectangular Microwave Turned-off Microwave Digital Microwave Closed Microwave White Microwave

Wet Road

Asphalt Street Asphalt Road Wet Road Paved Street Wet Street

Jumping Tennis-player

Jumping Tennis-player Playing-tennis Tennis-player Wearing-green Tennis-player Wearing-blue Tennis-player Jumping Player

Applications – Image-to-Text Retrieval

Unseen compositions

Brown Carpet

Clean Carpet Tan Carpet Beige Carpet Rectangular Carpet Brown Carpet

Squatting Umpire

Dressed Umpire Kneeling Player Dressed Catcher Squatting Player Kneeling Catcher

Spotted Neck

Brown Spot Spotted Fur Spotted Neck Long Neck Brown Fur

Metal Fence

Metal Pole Gray Fence Gray Metal Gray Wire Metal Leg

Applications – Visual Concept Retrieval

Applications – Visual Concept Retrieval

Thank you for your listening!

Welcome to our Poster: WED-PM-282

Code & Model: <u>https://github.com/haoosz/ade-czsl</u>

