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The problem: VL Models Struggle
with SVLC

* Current VL models focus on the object.
* VL models ignore relations between objects.
* VL models ignores object attributes and states.

» Called an “object bias” in recent literature

[winoground, vl checklist].

X Cat sits on a chair. 83 %

«/ Chair sits on a cat. 81%



The Solution: specialized
losses, augmented captions

 Current state: CLIP’s negative captions
are completely unrelated to the image.

* Our method:
» Positive captions augmentation.

» Negative captions augmentation by
minor changes to positive captions.

(a) Typical contrastive negative captions. (e.g. CLIP)
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(b) Our augmented captions.
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What are “Structured Vision & Language Concepts” (SVLC)?
SVLC - Structured Vision & Language Concepts.

Characteristics from both image and caption:
* Object attributes.

* Inter-object relations.
* Object states.
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The problem: VL Models Struggle
with SVLC

* Current VL models focus on the object.
* VL models ignore relations between objects.

VL model

X Cat sits on a chair. 83 %
«/ Chair sits on a cat. 81%

VL model ignores who does the action on who



The problem: VL Models Struggle
with SVLC

* Current VL models focus on the object.
* VL models ignores relations between objects.
* VL models ignores object attributes and states.

* Called an “object bias” in recent literature

[winoground, vl checklist].

X A black cat 75%
«/ A gray cat 72%

VL model ignores the cat’s color



The Solution: specialized
losses, augmented captions

 Current state: CLIP’s negative captions
are completely unrelated to the image.

* Our method:
» Positive captions augmentation.

» Negative captions augmentation by
minor changes to positive captions.

(a) Typical contrastive negative captions. (e.g. CLIP)
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VL-Checklist - SVLC Benchmark

* Match the correct caption to the image.

* The captions only differ in one word:

* Color

* Material
* Action

* Size

* etc.

Attribute Relation

[POS]: sheep is white. . [POS]: child brushing teeth.
Colox [NEG]: sheep is golden brown. Action [NEG]: child photographing teeth.

Material | [POSI:sheep is furry. Spatial { [POS]:shirt on boy. }

[NEG]:sheep is hardwood. [NEG]:shirt under boy.




VL-Checklist - VL models struggle

* CLIP excels in objects
* Struggles with relations and attributes




Large Vision and Language Datasets

* Conceptual Captions 3M (CC3M)
« ~ 3 million images-Text pairs
* harvested from the web

The man at bat readies to swing at
the pitch while the umpire looks on.

« LAION-400M (LAION)
* ~ 400 Million Image-Text Pairs

* CLIP-Filtered open dataset

A horse carrying a large load of
hay and two people sitting on it.




Our Approach

1. Rule-Based Negatives Resulting Negative:

Pattern matching:

¢ coloroptions * state options %
P . = & =  (color, “gray” = “ruby”) =

° action options ° size options

A ruby cat sits on top of
a plastic chair near a

- * material options plant
/ Text & Image pair Input \ P Choose an optlon
randomly
2. Large Language Model unmasking Negatives Resulting Negative:
. _— —
[ADJ][NOUN] [VERB] q )
A gray cat sits
. “— .
Parsing | mmp ﬁ? = % = ([ADJ], = A gray cat sits on top of =) =) A gray cat sits on top of
@ “vlastic” a <MASK> chair near a a wooden chair near a
[AD)] _ [NOUN] plastic”) Inference
a plastic chair plant — plant
wor] (ouN] Choose an option BERT
near a plant randomly \ )
e : o ; "
“A gray cat sits on top of a 3. Large Language Model prompting Positives Resulting Positive:
plastic chair near a plant” a woman standing on top of a sitting cat is semantic similar to a cat standing under a
\_ J woman. a baby crying to the right of a box is semantic similar to a box placed to the left of a Near a plant a gray

crying baby. a man sitting to the right of a dog is semantic similar to a dog sitting to the left =
of a man. a blue boat is semantic similar to a boat that is blue. @ gray cat sitting on hai
top of a plastic chair near a plant is semantic similar to... Inference using Bloom chair

—— —

cat sits on a plastic




Rule-Based Negatives

/Pattern matching: 0
* color options

* action options

* material options

* size options

(" | \_* stateoptions /
“A gray cat | Action]
ety Al
sits on. top of N = Color, gray = & = (color, “gray” = =
plastic chair on top of Action,sits — Cpoosean w1, ',,)
near a plant” [Matlerial] - Material, plastiC Option y
o ha
L b a plastc chalr randomly
near a plant \
Resulting Negative:
c _
= A ruby cat sits on top of a plastic chair near a plant
—_—




Large Language Model unmasking Negatives

Parsing
NOUN
[A%]gr[ay Cat]sits[VERB]
- N [ADP]
“A gray cat sits on top of % A gray cat sits
on top of a plastic [ADJ] [NOUN] = on top of
i = a plastic chair - = ([AD] ]., a <MASK> (™ | Inference |=
chareara Choose an ~ “plastic”) |  chair near a using
\ plant ) [ADP] a[]gllg)r}th] op;zonl plant . BERT
randomly
Resulting Negative:
r -

=| A gray cat sits on top of a WoOden chair near a plant




Large Language Model prompting Positives

a woman standing on top of a table

is semantically similar to a table

“A gray cat sits placed under a woman; ... ;...; ... |

on (fZZi‘;fn“ez”;tiC » |;...;agray cat sittingontop of a |= .
plant” plastic chair near a plant is Inference using

semantically similar to... Bloom

— M\

Resulting Positive:

c _
= Near a plant a gray cat sits on a plastic chair J




LLoss Modification

A gray cat sits on
top of a plastic
chair near a plant
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LLoss Modification - Positive
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Loss Modification - Negative
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Finetuning Using CC3M Data

A-Material
89.2

A-State

A-Color

VL-Checklist 21 Zero-Shot Tasks

Object Attribute Relation Average
CLIP [59] 81.58% 67.60% 63.05% \ 56.37%
CLIP +LoRA 80.93% (-0.66%)  66.28% (-1.32%)  55.52% (-7.53%) 56.41%(+0.04%)
Ours RB Neg 83.89% (+2.30%) 73.35% (+5.75%) 75.33% (+12.28%) | 54.32% (-2.05%))
Ours LLM Neg 84.44% (+2.85%) 71.63% (+4.03%) 74.82% (+11.77%) | 55.60% (-0.77%))
Ours RB+LLM Negs | 85.09% (+3.50%) 73.90% (+6.30%) 78.72% (+15.67%) | 54.66% (-1.71%))
Ours Combined 85.00% (+3.42%) 71.97% (+4.37%) 68.95% (+5.90%) 54.77% (-1.60%))

74.86

A-Action

R-Spatial
/8140

-~ 84 .
R-Action



Training from Scratch

A-Color

- 68.63 |
R-Action

66.15 \72.77

A-State S A-Action

VL-Checklist

21 Zero-Shot Tasks

Object Attribute Relation Average
CLIP 71.17% 57.86% 45.20% 21.96%
CLIP + Ours Combined 71.79% (+0.62%)  63.29% (+5.43%)  58.13% (+12.93%) | 20.96% (-1.00%)
CyCLIP 69.41% 57.59% 53.70% 21.02%
CyCLIP + Ours Combined | 71.50% (+2.09% ) 65.69% (+8.10% ) 70.20% (+16.50% ) | 20.44% (-0.42%)




Finetuning Using LAION400M Data

VL-Checklist

21 Zero-Shot Tasks

Object Attribute Relation Average
CLIP [59] 0.8158 0.676 0.6305 56.37%
CLIP + LoRA 82.18% (+0.60%) 68.48% (+0.88%) 62.72% (-0.33%) | 57.15% (+0.78%)
Ours Combined | 82.54% (+0.96%) 69.64% (+2.04%) 66.05% (+3.00%) | 56.71% (+0.34%)




Summary

* Current V&L models mainly focus on objects and disregard
detailed information in the text

* By manipulating just the textual descriptions and slightly
modifying the loss function, we found that these models can
greatly improve SVLC tasks.

* We are still a long way from having good SVLC in Vision &
Language models. Further research in this direction is welcome
and necessary



