

IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR 2023)

Physically Realizable Natural-Looking Clothing Textures Evade Person Detectors via 3D Modeling

Zhanhao Hu*, Wenda Chu*, Xiaopei Zhu, Hui Zhang, Bo Zhang, Xiaolin Hu

Tag: THU-AM-047

Overview:

We craft natural-looking clothing textures via 3D modeling in the physical world that can evade person detectors at multiple angles Limitations of previous work:

1. Adversarial textures (Fig.(d)) are conspicuous to humans.

2. 3D modeling adversarial textures are not robust when applied to nonrigid objects.

• Texture parameterization

- Camouflage Color Voronoi pattern cluster diagram
- 3D augmentation by

TopoProj

GeoProj

Related work :

1. patch-based attack, single viewing angle

Thys et al., 2019 Xu et al., 2020

Hu et al., 2021

2. texture-based attack, multiple viewing angles

Rigid object (3D printed)

Athalye et al. 2018

Non-rigid **Clothing textures**

Ours, 2022

Method Part 1: Texture parameterization

Method Part 1: Texture parameterization

Method Part 2: 3D augmentation

- Problem: 3D textures are not robust when applied to non-rigid objects.
- Solution: Augment rendered image by GeoProj & TopoProj. GeoProj: Typical UV coordinates of the vertices TopoProj: Created by us

Method Part 2: 3D augmentation

- Instead of simulating the movement of 3D vertices, we warp the texture during the rendering
- Each pixel corresponds to a light path which may have intersections with the mesh

Overall Pipeline:

• Texture parameterization + 3D augmentation

Result: Subjective test

• 7-level Likert scale (1 = not natural at all to 7 = very natural)

Result: Digital world

• Adversarial Success Rates (ASRs) with different IoU threshold

Method	IoU0.01	IoU0.1	IoU0.3	IoU0.5
RandColor	0.13	0.13	0.13	0.17
RandCaT	1.02	1.02	1.04	1.10
AdvPatch	69.33	72.27	75.80	85.97
NatPatch	42.47	43.66	45.41	67.40
AdvTexture	1.44	21.73	87.05	99.98
AdvCaT (ours)	95.18	99.21	99.40	99.52

• Ablation study of 3D augmentations

Result: Physical world

• Visualization and Attack Success Rates (ASRs)

Random ASR=0.00 %

AdvCaT w/o aug ASR=19.27 %

AdvCaT w/ aug ASR=85.94 %

• ASRs at different viewing angles

Result: Video demo

• Turning circles & twisting

Turning circles

Twisting

Thank you!

For more details, please look at our paper

Zhanhao Hu*, Wenda Chu*, Xiaopei Zhu, Hui Zhang, Bo Zhang, Xiaolin Hu

{huzhanha17, chuwd19, zxp18}@mails.tsinghua.edu.cn fzyzhh@bift.edu.cn, {dcszb, xlhu}@mail.tsinghua.edu.cn