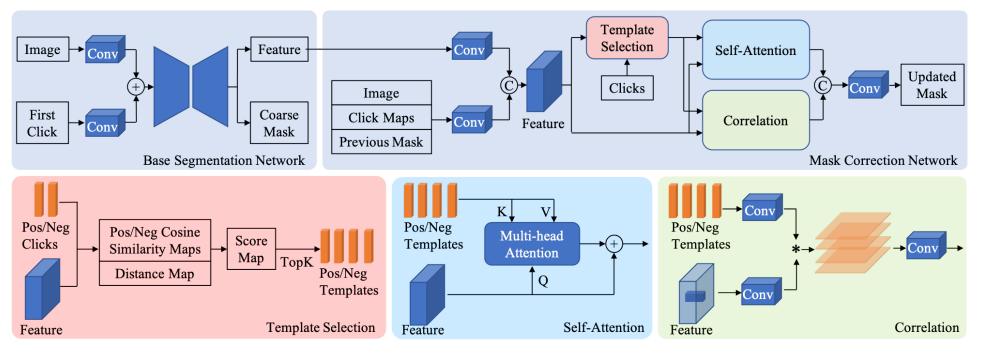

Efficient Mask Correction for Click-Based Interactive Image Segmentation

<u>Fei Du</u>, Jianlong Yuan, Zhibin Wang, Fan Wang Alibaba Group

THU-PM-207


Preview

- Interactive segmentation:
 - Extract target masks with the input of positive/negative clicks.
 - An attractive way to simplify the mask annotation process.
- Classic Methods:
 - Run a segmentation network to update the masks Iteratively.
 - Time-consuming especially when a strong segmentation network is used.
- Proposed Method:
 - Correct the masks via a lightweight mask correction network.
 - Improve the performance via two click-based feature augmentation modules.

Proposed method

- Framework:
 - A base segmentation network is used to extract target-aware features and predict the first coarse mask.
 - The mask correction network corrects the coarse mask and iteratively updates the mask with the input of user clicks.
 - Two click-guided feature augmentation modules are proposed to improve the network.

Experiments

• Speed on CPUs per click

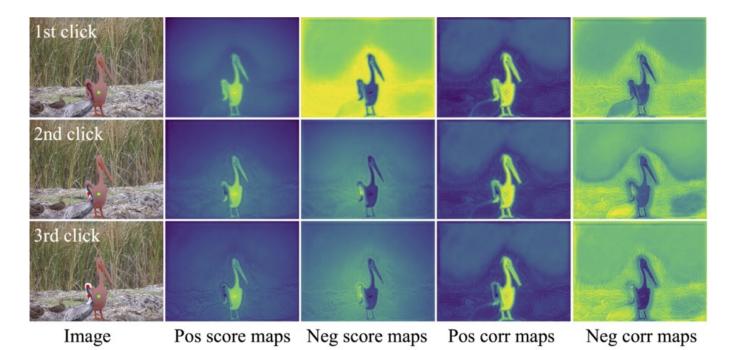
Method	Params/MB	FLOPs/G	Speed/ms
CDNet-ResNet34384 [7]	23.5	56.7	3339
f-BRS-ResNet50400 [39]	31.4	84.6	2373
RITM-hrnet18s ₄₀₀ [40]	4.22	8.96	634
RITM-hrnet18400 [40]	10.0	15.4	1103
RITM-hrnet32400 [40]	31.0	40.4	1635
FocalClick-hrnet18s ₂₅₆ [8]	4.23	3.82	358
FocalClick-hrnet32 ₂₅₆ [8]	31.0	17.1	728
FocalClick-SegB0 ₂₅₆ [8]	3.74	1.94	207
FocalClick-SegB3 ₂₅₆ [8]	45.6	12.9	805
Ours-hrnet18s-FirstClick ₃₈₄	4.33	9.35	752
Ours-hrnet18-FirstClick ₃₈₄	10.3	15.3	1237
Ours-hrnet32-FirstClick ₃₈₄	31.2	40.5	1745
Ours-SegB0-FirstClick384	3.84	5.38	528
Ours-SegB3-FirstClick ₃₈₄	45.9	32.3	2006
Ours-MaskCorrection-C64384	0.11	1.09	183
Ours-MaskCorrection-C96384	0.22	2.25	280

• Speed on GPUs per click (ms)

	HRNet18s	HRNet32	SegB0	SegB3
RITM	30 / 22	59 / 40	-	-
FocalClick	35 / 26	61 / 45	21/16	44 / 34
Ours-FirstClick	38/30	70 / 47	23 / 17	54/36
Ours-MaskCorrection	9/7	10 / 7	9/7	10/7

• Total evaluation time on SBD dataset

	NoC@90	Time@90	NoC@95	Time@95
FocalClick-hrnet18s	6.79	34min	12.78	62min
FocalClick-hrnet32	6.51	49min	12.50	85min
FocalClick-SegB0	6.86	23min	12.73	39min
FocalClick-SegB3	5.59	34min	11.55	63min
Ours-hrnet18s	6.16	19min	12.47	30min
Ours-hrnet32	5.65	21min	11.90	32min
Ours-SegB0	6.21	16min	12.45	27min
Ours-SegB3	5.57	20min	11.65	29min


Experiments

• Competitive performance on five benchmarks

		Gra	bCut	Berkeley	SE	BD	DAV	VIS	Pascal
Methods	Train Data	NoC@85	NoC@90	NoC@90	NoC@85	NoC@90) NoC@85	NoC@9() NoC@85
f-BRS-B-ResNet50 [39]	SBD	2.50	2.98	4.34	5.06	8.08	5.39	7.81	
CDNet-ResNet50 [7]	SBD	2.22	2.64	3.69	4.37	7.87	5.17	6.66	-
FocusCut-ResNet50 [26]	SBD	1.60	1.78	3.44	3.62	5.66	5.00	6.38	-
FocalClick-hrnet18s [8]	SBD	1.86	2.06	3.14	4.30	6.52	4.92	6.48	-
RITM-hrnet18 [40]	SBD	1.76	2.04	3.22	3.39	5.43	4.94	6.71	-
Ours-hrnet18s	SBD	1.82	1.92	3.26	3.58	5.79	5.23	6.88	2.47
Ours-hrnet18	SBD	1.74	1.84	3.03	3.38	5.51	5.05	6.71	2.37
TransClick-segformerB4 [11]	C+L	1.52	1.60	1.60	3.44	5.63	3.68	5.06	2.08
FocalClick-segformerB0 [8]	C+L	1.40	1.66	2.27	4.56	6.86	4.04	5.49	2.97
Ours-segformerB0	C+L	1.56	1.64	2.40	3.95	6.21	4.48	5.53	2.65
FocalClick-segformerB3 [8]	C+L	1.44	1.50	1.92	3.53	5.59	3.61	4.90	2.46
Ours-segformerB3	C+L	1.42	1.48	2.35	3.44	5.57	4.49	5.69	2.23
RITM-hrnet18s [40]	C+L	1.54	1.68	2.60	4.04	6.48	4.70	5.98	2.57
FocalClick-hrnet18s [8]	C+L	1.48	1.62	2.66	4.43	6.79	3.90	5.25	2.93
Ours-hrnet18s	C+L	1.40	1.52	2.68	3.86	6.16	4.42	5.66	2.37
RITM-hrnet18 [40]	C+L	1.42	1.54	2.26	3.80	6.06	4.36	5.74	2.28
EdgeFlow-hrnet18 [15]	C+L	1.60	1.72	2.40	-	-	4.54	5.77	2.50
Ours-hrnet18	C+L	1.38	1.50	2.30	3.69	5.93	4.34	5.59	2.37
RITM-hrnet32 [40]	C+L	1.46	1.56	2.10	3.59	5.71	4.11	5.34	2.57
FocalClick-hrnet32 [8]	C+L	1.64	1.80	2.36	4.24	6.51	4.01	5.39	2.80
PseudoClick-hrnet32 [29]	C+L	-	1.50	2.08	-	5.68	4.09	5.27	1.94
Ours-hrnet32	C+L	1.30	1.42	2.35	3.55	5.65	4.29	5.33	2.22

Experiments

- Ablation study
 - The first click helps extract target-aware features.
 - The correlation module helps learn target outlines.
 - The self-attention module propagates the click information.
 - The template selection module enriches click features.

1st Click	Corr	Self-Att	TS	DAVIS NoC@90	SBD NoC@90	Pascal NoC@90
				7.11	8.32	4.38
\checkmark				6.98	6.83	3.19
\checkmark	\checkmark			6.32	6.30	3.09
\checkmark		\checkmark		6.02	6.33	2.98
\checkmark	\checkmark	\checkmark		5.86	6.24	2.89
\checkmark	\checkmark	\checkmark	\checkmark	5.66	6.16	2.84

Table 4. Ablation study on three challenging benchmarks. HR-Net18s is used as the base segmentation network. *1st Click* denotes that we input the first click to the base segmentation network, *Corr* denotes the correlation module, *Self-Att* denotes the self-attention module, and *TS* denotes the template selection module.

	Negative	DAVIS	SBD	Pascal
	Templates	NoC@90	NoC@90	NoC@90
Correlation	\checkmark	6.10	6.39	3.01
Module		6.09	6.26	2.96
Self-Attention	\checkmark	6.04	6.55	3.22
Module		5.92	6.29	2.99

Table 5. The performance of the correlation and self-attention modules with and without the adoption of the negative templates.

Conclusion

- Propose an efficient click-based interactive segmentation method.
- The method saves much inference time from the second click.
- Propose click-guided correlation and self-attention modules to exploit the click information to boost performance.
- Experimental results on five datasets show the effectiveness and efficiency of our method.
- Limitation: cannot save inference time of the first click.
- Code will be released at https://github.com/feiaxyt/EMC-Click

Thanks!