

Revisiting Temporal Modeling for CLIP-based Image-to-Video KnowledgeTransferring

Ruyang Liu^{1*}, Jingjia Huang^{2*}, Ge Li¹, Jiashi Feng², Xinglong Wu², Thomas Li¹

1 Peking University, School of Electronic and Computer Engineering 2 ByteDance Inc, Intelligent Creation Team

Background

CoCa

(+

L-FFN

Language

Expert

(+)

Self-Attention

Multimodal Input

VL-FFN

VL

Expert

Captioning Loss

Multimodal

two dogs running in a field [/s]

Background

Video-text pretrained model?

- hard to collect video-text as diverse and • large in scale as image-text data
- computational consumption

Image-Text pretrained model

Video domain

- video-text retrieval
- video recognition

• • •

Introduction

Posterior structure:

- late fusion upon highly semantic embeddings
- downstream video-text retrieval task
- benefit to transfer well aligned visual-language representation (i.e., high-level knowledge)
 Cons:
 - a sub-optimal temporal modeling strategy that hardly capture the spatial-temporal visual patterns

Introduction

Intermediate structure:

- Intermediate fusion
- downstream video recognition task
- benefit from the pretrained visual patterns (i.e., low-level knowledge) to strengthen spatial-temporal modeling capability of CLIP

Cons:

• impact the pretrained high-level knowledge which brings about trivial improvement to video-text retrieval

Introduction

Key point for extending CLIP to the video domian?

temporal modeling + high-level knowledge + low-level knowledge

Branch structure:

- operate temporal modeling at different level of CLIP outputs
- the structure is outside the visual backbone avoiding to break the inherent structure of CLIP backbone and affect the pretrained high-level knowledge

Model design

Spatial-Temporal Auxiliary Network (STAN)

Branch structure with multi-level CLIP :

• attend to both high-level and low-level video representations

Separated spatial-temporal module:

- Computation efficiency
- Spatial module can reuse parameter in CLIP
- Present two instantiations of temporal module: Conv-based & Self-attention based

Table 2. Comparisons on MSR-VTT [43]. We train on Training-9K and test on Test-1k-A. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

	-			
Methods	R@1↑	R@5↑	R@10↑	MdR↓
Pretrained on large-sc	ale video-text	dataset		
ClipBERT [22]	22.0	46.8	59.9	6.0
Frozen [3]	31.0	59.5	70.5	3.0
HD-VILA [44]	35.6	65.3	78.0	3.0
All-in-one [40]	37.9	68.1	77.1	-
BridgeFormer [15]	37.6	64.8	75.1	3.0
Clover [18]	38.6	67.4	76.4	2.0
CLIP pretrained				
Clip4Clip [25]	44.5	71.4	81.6	2.0
CenterCLIP [47]	44.2	71.6	82.1	2.0
CLIP2Video* [13]	47.2	73.0	83.0	-
CAMoE* [9]	47.3	74.2	84.5	3.0
CLIP2TV-B/16 [14]	49.3	74.7	83.6	2.0
DRL-B/16* [42]	53.3	80.3	87.6	1.0
Our method				
A-STA-B/32	46.9	72.8	82.8	2.0
C-STA-B/32	46.6	72.8	82.2	2.0
A-STA-B/16	50.0	75.2	84.1	1.5
A-STA-B/16*	55.1	77.8	86.1	1.0

Table 5. Comparison on LSMDC [34]. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

			•	
Methods	R@ 1↑	R@5↑	R@10↑	MdR ↓
Pretrained on large-s	cale video-tex	xt dataset		
Frozen [3]	15.0	30.8	40.3	20.0
HD-VILA [44]	17.4	34.1	44.1	15.0
BridgeFormer [15]	17.9	35.4	44.5	15.0
Clover [18]	22.7	42.0	52.6	9.0
CLIP pretrained				
Clip4Clip [25]	21.6	41.8	49.8	8.0
CAMoE* [9]	25.9	46.1	53.7	-
DRL-B/16 [42]	26.5	47.6	56.8	7.0
Our method				
A-STA-B/32	23.7	42.7	51.8	9.0
C-STA-B/32	23.1	42.2	51.0	9.0
A-STA-B/16	27.1	49.3	58.7	6.0
A-STA-B/16*	29.2	49.5	58.8	6.0

Table 4. Comparisons on DiDemo [1]. We concatenate all captions of a video into a single query. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@ 1↑	R@5↑	R@10↑	MdR↓		
Pretrained on large-s	Pretrained on large-scale video-text dataset					
ClipBERT [22]	20.4	48.0	60.8	6.0		
Frozen [3]	31.0	59.8	72.4	3.0		
HD-VILA [44]	28.8	57.4	69.1	4.0		
All-in-one [40]	32.7	61.4	73.5	3.0		
BridgeFormer [15]	37.0	62.2	73.9	3.0		
Clover [18]	48.6	74.3	82.2	2.0		
CLIP pretrained						
Clip4Clip [25]	43.4	70.2	80.6	2.0		
CAMoE* [9]	43.8	71.4	-	-		
CLIP2TV [14]	45.5	69.7	80.6	2.0		
DRL-B/16 [42]	49.0	76.5	84.5	2.0		
Our method						
A-STA-B/32	46.2	70.4	80.0	2.0		
C-STA-B/32	46.5	71.5	80.9	2.0		
C-STA-B/16	49.4	74.9	83.2	1.0		
C-STA-B/16*	54.6	78.4	85.1	1.0		

Benchmark:

- MSRVTT
- DiDeMo
- LSMDC

Set-up:

- contrastive loss
- different model scale (B/16, B/32)
- w/ or w/o DSL

Table 2. Comparisons on MSR-VTT [43]. We train on Training-9K and test on Test-1k-A. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

_		-			
	Methods	R@1↑	R@5↑	R@10↑	MdR↓
	Pretrained on large-sco	ale video-text	dataset		
	ClipBERT [22]	22.0	46.8	59.9	6.0
	Frozen [3]	31.0	59.5	70.5	3.0
	HD-VILA [44]	35.6	65.3	78.0	3.0
	All-in-one [40]	37.9	68.1	77.1	-
	BridgeFormer [15]	37.6	64.8	75.1	3.0
	Clover [18]	38.6	67.4	76.4	2.0
	CLIP pretrained				
	Clip4Clip [25]	44.5	71.4	81.6	2.0
	CenterCLIP [47]	44.2	71.6	82.1	2.0
	CLIP2Video* [13]	47.2	73.0	83.0	-
	CAMoE* [9]	47.3	74.2	84.5	3.0
	CLIP2TV-B/16 [14]	49.3	74.7	83.6	2.0
	DRL-B/16* [42]	53.3	80.3	87.6	1.0
	Our method				
	A-STA-B/32	46.9	72.8	82.8	2.0
	C-STA-B/32	46.6	72.8	82.2	2.0
	A-STA-B/16	50.0	75.2	84.1	1.5
	A-STA-B/16*	55.1	77.8	86.1	1.0
_					

Table 5. Comparison on LSMDC [34]. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

	/		e	
Methods	R@ 1↑	R@5↑	R@10↑	MdR↓
Pretrained on large-	scale video-tex	ct dataset		
Frozen [3]	15.0	30.8	40.3	20.0
HD-VILA [44]	17.4	34.1	44.1	15.0
BridgeFormer [15]	17.9	35.4	44.5	15.0
Clover [18]	22.7	42.0	52.6	9.0
CLIP pretrained				
Clip4Clip [25]	21.6	41.8	49.8	8.0
CAMoE* [9]	25.9	46.1	53.7	-
DRL-B/16 [42]	26.5	47.6	56.8	7.0
Our method				
A-STA-B/32	23.7	42.7	51.8	9.0
C-STA-B/32	23.1	42.2	51.0	9.0
A-STA-B/16	27.1	49.3	58.7	6.0
A-STA-B/16*	29.2	49.5	58.8	6.0

Table 4. Comparisons on DiDemo [1]. We concatenate all captions of a video into a single query. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@ 1↑	R@5↑	R@10↑	MdR↓
Pretrained on large-s	cale video-tex	ct dataset		
ClipBERT [22]	20.4	48.0	60.8	6.0
Frozen [3]	31.0	59.8	72.4	3.0
HD-VILA [44]	28.8	57.4	69.1	4.0
All-in-one [40]	32.7	61.4	73.5	3.0
BridgeFormer [15]	37.0	62.2	73.9	3.0
Clover [18]	48.6	74.3	82.2	2.0
CLIP pretrained				
Clip4Clip [25]	43.4	70.2	80.6	2.0
CAMoE* [9]	43.8	71.4	-	-
CLIP2TV [14]	45.5	69.7	80.6	2.0
DRL-B/16 [42]	49.0	76.5	84.5	2.0
Our method				
A-STA-B/32	46.2	70.4	80.0	2.0
C-STA-B/32	46.5	71.5	80.9	2.0
C-STA-B/16	49.4	74.9	83.2	1.0
C-STA-B/16*	54.6	78.4	85.1	1.0

Benchmark:

- MSRVTT
- DiDeMo
- LSMDC

Set-up:

- contrastive loss
- different model scale (B/16, B/32)
- w/ or w/o DSL

- SOTA on 3 video-text retrieval datasets under:
 - both model size B/32 and B/16
 - w/ and w/o extra tricks (e.g., DSL and QB-Norm)
 - outperform strong competitor including DRL, CAMoE, CenterCLIP

Table 2. Comparisons on MSR-VTT [43]. We train on Training-9K and test on Test-1k-A. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@ 1↑	R@5↑	R@10↑	MdR↓		
Pretrained on large-scale video-text dataset						
ClipBERT [22]	22.0	46.8	59.9	6.0		
Frozen [3]	31.0	59.5	70.5	3.0		
HD-VILA [44]	35.6	65.3	78.0	3.0		
All-in-one [40]	37.9	68.1	77.1	-		
BridgeFormer [15]	37.6	64.8	75.1	3.0		
Clover [18]	38.6	67.4	76.4	2.0		
CLIP pretrained						
Clip4Clip [25]	44.5	71.4	81.6	2.0		
CenterCLIP [47]	44.2	71.6	82.1	2.0		
CLIP2Video* [13]	47.2	73.0	83.0	-		
CAMoE* [9]	47.3	74.2	84.5	3.0		
CLIP2TV-B/16 [14]	49.3	74.7	83.6	2.0		
DRL-B/16* [42]	53.3	80.3	87.6	1.0		
Our method						
A-STA-B/32	46.9	72.8	82.8	2.0		
C-STA-B/32	46.6	72.8	82.2	2.0		
A-STA-B/16	50.0	75.2	84.1	1.5		
A-STA-B/16*	55.1	77.8	86.1	1.0		

Table 4. Comparisons on DiDemo [1]. We concatenate all captions of a video into a single query. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

-	Methods	R@ 1↑	R@5↑	R@10↑	MdR ↓
	Pretrained on large-s	cale video-tex	ct dataset		
	ClipBERT [22]	20.4	48.0	60.8	6.0
	Frozen [3]	31.0	59.8	72.4	3.0
	HD-VILA [44]	28.8	57.4	69.1	4.0
	All-in-one [40]	32.7	61.4	73.5	3.0
	BridgeFormer [15]	37.0	62.2	73.9	3.0
	Clover [18]	48.6	74.3	82.2	2.0
	CLIP pretrained				
	Clip4Clip [25]	43.4	70.2	80.6	2.0
	CAMoE* [9]	43.8	71.4	-	-
	CLIP2TV [14]	45.5	69.7	80.6	2.0
	DRL-B/16 [42]	49.0	76.5	84.5	2.0
	Our method				
	A-STA-B/32	46.2	70.4	80.0	2.0
	C-STA-B/32	46.5	71.5	80.9	2.0
	C-STA-B/16	49.4	74.9	83.2	1.0
_	C-STA-B/16*	54.6	78.4	85.1	1.0

Benchmark:

- MSRVTT
- DiDeMo
- LSMDC

Set-up:

- contrastive loss
- different model scale (B/16, B/32)
- w/ or w/o DSL
- Obvious advantage over posterior structure method with comparable model size i.e., CLIP4clip (+2.9% averaged on 3 datasets)

Table 5. Comparison on LSMDC [34]. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@ 1↑	R@5↑	R@10↑	MdR ↓		
Pretrained on large-scale video-text dataset						
Frozen [3]	15.0	30.8	40.3	20.0		
HD-VILA [44]	17.4	34.1	44.1	15.0		
BridgeFormer [15]	17.9	35.4	44.5	15.0		
Clover [18]	22.7	42.0	52.6	9.0		
CLIP pretrained						
Clip4Clip [25]	21.6	41.8	49.8	8.0		
CAMoE* [9]	25.9	46.1	53.7	-		
DRL-B/16 [42]	26.5	47.6	56.8	7.0		
Our method						
A-STA-B/32	23.7	42.7	51.8	9.0		
C-STA-B/32	23.1	42.2	51.0	9.0		
A-STA-B/16	27.1	49.3	58.7	6.0		
A-STA-B/16*	29.2	49.5	58.8	6.0		

Table 2. Comparisons on MSR-VTT [43]. We train on Training-9K and test on Test-1k-A. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

	-					
Methods	R@ 1↑	R@5 ↑	R@10↑	MdR \downarrow		
Pretrained on large-scale video-text dataset						
ClipBERT [22]	22.0	46.8	59.9	6.0		
Frozen [3]	31.0	59.5	70.5	3.0		
HD-VILA [44]	35.6	65.3	78.0	3.0		
All-in-one [40]	37.9	68.1	77.1	-		
BridgeFormer [15]	37.6	64.8	75.1	3.0		
Clover [18]	38.6	67.4	76.4	2.0		
CLIP pretrained						
Clip4Clip [25]	44.5	71.4	81.6	2.0		
CenterCLIP [47]	44.2	71.6	82.1	2.0		
CLIP2Video* [13]	47.2	73.0	83.0	-		
CAMoE* [9]	47.3	74.2	84.5	3.0		
CLIP2TV-B/16 [14]	49.3	74.7	83.6	2.0		
DRL-B/16* [42]	53.3	80.3	87.6	1.0		
Our method						
A-STA-B/32	46.9	72.8	82.8	2.0		
C-STA-B/32	46.6	72.8	82.2	2.0		
A-STA-B/16	50.0	75.2	84.1	1.5		
A-STA-B/16*	55.1	77.8	86.1	1.0		

Table 4. Comparisons on DiDemo [1]. We concatenate all captions of a video into a single query. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@1↑	R@5↑	R@10↑	MdR ↓
Pretrained on large-s	cale video-tex	xt dataset		
ClipBERT [22]	20.4	48.0	60.8	6.0
Frozen [3]	31.0	59.8	72.4	3.0
HD-VILA [44]	28.8	57.4	69.1	4.0
All-in-one [40]	32.7	61.4	73.5	3.0
BridgeFormer [15]	37.0	62.2	73.9	3.0
Clover [18]	48.6	74.3	82.2	2.0
CLIP pretrained				
Clip4Clip [25]	43.4	70.2	80.6	2.0
CAMoE* [9]	43.8	71.4	-	-
CLIP2TV [14]	45.5	69.7	80.6	2.0
DRL-B/16 [42]	49.0	76.5	84.5	2.0
Our method				
A-STA-B/32	46.2	70.4	80.0	2.0
C-STA-B/32	46.5	71.5	80.9	2.0
C-STA-B/16	49.4	74.9	83.2	1.0
C-STA-B/16*	54.6	78.4	85.1	1.0

Benchmark:

- MSRVTT
- DiDeMo
- LSMDC

Set-up:

- contrastive loss
- different model scale (B/16, B/32)
- w/ or w/o DSL

In STAN, 3D convolution based temporal module is comparable (+-0.3) with self-attention based temporal module when transferring to smaller datasets, e.g., MSRVTT and DiDeMo; self-attention based temporal module is better for larger scale dataset, e,g., LSMDC (+0.6)

Table 5. Comparison on LSMDC [34]. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@1↑	R@5↑	R@10 ↑	MdR ↓			
Pretrained on large-scale video-text dataset							
Frozen [3]	15.0	30.8	40.3	20.0			
HD-VILA [44]	17.4	34.1	44.1	15.0			
BridgeFormer [15]	17.9	35.4	44.5	15.0			
Clover [18]	22.7	42.0	52.6	9.0			
CLIP pretrained							
Clip4Clip [25]	21.6	41.8	49.8	8.0			
CAMoE* [9]	25.9	46.1	53.7	-			
DRL-B/16 [42]	26.5	47.6	56.8	7.0			
Our method							
A-STA-B/32	23.7	42.7	51.8	9.0			
C-STA-B/32	23.1	42.2	51.0	9.0			
A-STA-B/16	27.1	49.3	58.7	6.0			
A-STA-B/16*	29.2	49.5	58.8	6.0			

Table 2. Comparisons on MSR-VTT [43]. We train on Training-9K and test on Test-1k-A. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@ 1↑	R@5↑	R@10↑	MdR↓				
Pretrained on large-scale video-text dataset								
ClipBERT [22]	22.0	46.8	59.9	6.0				
Frozen [3]	31.0	59.5	70.5	3.0				
HD-VILA [44]	35.6	65.3	78.0	3.0				
All-in-one [40]	37.9	68.1	77.1	-				
BridgeFormer [15]	37.6	64.8	75.1	3.0				
Clover [18]	38.6	67.4	76.4	2.0				
CLIP pretrained								
Clip4Clip [25]	44.5	71.4	81.6	2.0				
CenterCLIP [47]	44.2	71.6	82.1	2.0				
CLIP2Video* [13]	47.2	73.0	83.0	-				
CAMoE* [9]	47.3	74.2	84.5	3.0				
CLIP2TV-B/16 [14]	49.3	74.7	83.6	2.0				
DRL-B/16* [42]	53.3	80.3	87.6	1.0				
Our method								
A-STA-B/32	46.9	72.8	82.8	2.0				
C-STA-B/32	46.6	72.8	82.2	2.0				
A-STA-B/16	50.0	75.2	84.1	1.5				
A-STA-B/16*	55.1	77.8	86.1	1.0				

Table 4. Comparisons on DiDemo [1]. We concatenate all captions of a video into a single query. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@ 1↑	R@5↑	R@10↑	MdR↓					
Pretrained on large-scale video-text dataset									
ClipBERT [22]	20.4	48.0	60.8	6.0					
Frozen [3]	31.0	59.8	72.4	3.0					
HD-VILA [44]	28.8	57.4	69.1	4.0					
All-in-one [40]	32.7	61.4	73.5	3.0					
BridgeFormer [15]	37.0	62.2	73.9	3.0					
Clover [18]	48.6	74.3	82.2	2.0					
CLIP pretrained									
Clip4Clip [25]	43.4	70.2	80.6	2.0					
CAMoE* [9]	43.8	71.4	-	-					
CLIP2TV [14]	45.5	69.7	80.6	2.0					
DRL-B/16 [42]	49.0	76.5	84.5	2.0					
Our method									
A-STA-B/32	46.2	70.4	80.0	2.0					
C-STA-B/32	46.5	71.5	80.9	2.0					
C-STA-B/16	49.4	74.9	83.2	1.0					
C-STA-B/16*	54.6	78.4	85.1	1.0					

- Benchmark:
- MSRVTT
- DiDeMo
- LSMDC

Set-up:

- contrastive loss
- different model scale (B/16, B/32)
- w/ or w/o DSL

- Simple and potentially compatiable with other SOTA methods (future work)
 - multi-modal interaction modeling
 - hard sample matching
 - hierarchical modeling

Table 5. Comparison on LSMDC [34]. * means extra tricks (*e.g.*, DSL [9] and QB-Norm [5]) are utilized during inference.

Methods	R@ 1↑	R@5↑	R@10↑	MdR ↓				
Pretrained on large-scale video-text dataset								
Frozen [3]	15.0	30.8	40.3	20.0				
HD-VILA [44]	17.4	34.1	44.1	15.0				
BridgeFormer [15]	17.9	35.4	44.5	15.0				
Clover [18]	22.7	42.0	52.6	9.0				
CLIP pretrained								
Clip4Clip [25]	21.6	41.8	49.8	8.0				
CAMoE* [9]	25.9	46.1	53.7	-				
DRL-B/16 [42]	26.5	47.6	56.8	7.0				
Our method								
A-STA-B/32	23.7	42.7	51.8	9.0				
C-STA-B/32	23.1	42.2	51.0	9.0				
A-STA-B/16	27.1	49.3	58.7	6.0				
A-STA-B/16*	29.2	49.5	58.8	6.0				

Methods	Pretrain	Frames	Testing Views	GFLOPs	Top-1 Accuracy	Top-5 Accuracy
Large-scale image pretraining						
VTN-ViT-B [28]	ImageNet-21 K	250	1×1	3992	78.6	93.7
TimeSformer-L [4]	ImageNet-21 K	96	1×3	7140	80.7	94.7
Mformer-HR [32]	ImageNet-21 K	16	10 imes 3	28764	83.1	95.9
Swin-L (384 ↑)1001[24]	ImageNet-21 K	32	10×5	105350	84.9	96.7
MViTv2-L (312↑)1001[23]	ImageNet-21 K	40	5×3	42420	86.1	97.0
ViViT-H [2]	JFT-300M	32	4 imes 3	17352	84.8	95.8
TokenLearner-L/10 [35]	JFT-300M	-	4 imes 3	48912	85.4	96.3
Large-scale image-text pretrain	ing					
CLIP-B/16 [11]	CLIP-400M	8	4 imes 3	-	81.1	94.8
Action-CLIP-B/16 [41]	CLIP-400M	32	10 imes 3	16890	83.8	96.2
A6 [20]	CLIP-400M	16	—	-	76.9	93.5
STadapter-CLIP-B/16 [41]	CLIP-400M	8	1×3	455	82.0	95.7
STadapter-CLIP-B/16 [41]	CLIP-400M	32	1×3	1821	82.7	96.2
X-CLIP-B/16 [41]	CLIP-400M	8	4 imes 3	1740	83.8	96.7
X-CLIP-B/16 [41]	CLIP-400M	16	4 imes 3	3444	84.7	96.8
Our method						
C-STA-B/16	CLIP-400M	8	1×3	714	83.1	96.0
A-STA-B/16	CLIP-400M	8	1×3	593	84.2	96.5
A-STA-B/16	CLIP-400M	16	1×3	1187	84.9	96.7

Table 6. Comparison between our method and the state-of-the-arts on Kinetics-400 validation set [21]. We report the FLOPs of all views.

Kinetics-400:

- Be superior to CLIP-based method on both acc and FLOPs
- Comparable acc with much lower FLOPs than Image-pretrained SOTA.

Sample classes in Something-Something-v2

- Putting something on a surface
- Moving something up
- Covering something with something
- Pushing something from left to right
- Moving something down
- Pushing something from right to left
- Uncovering something

Table 5.	Comparison on	Something-Somethin	ng-v2 validation se	et [<mark>15</mark>]. V	We report the FL	OPs of all views.	* means our implementation.
----------	---------------	--------------------	---------------------	---------------------------	------------------	-------------------	-----------------------------

1	0 0					1
Methods	Pretrain	Frames	Testing Views	GFLOPs	Top-1 Accuracy	Top-5 Accuracy
TimeSformer-HR [4]	ImageNet-21 K	16	1×3	5109	62.5	-
ViViT-L [2]	K400	16	4 imes 3	11892	65.4	89.8
MViT-B-24 [21]	K600	32	1 imes 3	708	68.7	91.5
Video-Swin-B [24]	K400	32	1×3	963	69.6	92.7
CLIP-B/16 [9]	CLIP-400M	8	1×3	-	44.0	76.2
X-CLIP-B/16* [40]	CLIP-400M	8	1×3	435	63.1	89.0
STadapter-CLIP-B/16 [40]	CLIP-400M	8	1×3	489	67.1	91.2
STadapter-CLIP-B/16 [40]	CLIP-400M	32	1 imes 3	1955	69.5	92.6
Our method						
STAN-conv-B/16	CLIP-400M	8	1×3	845	65.2	90.5
STAN-self-B/16	CLIP-400M	8	1 imes 3	688	67.6	91.4
STAN-self-B/16	CLIP-400M	16	1×3	1376	69.5	92.7

SSv2:

- CLIP has little advantage
- significantly improve CLIPbaseline (+21%); best among CLIP-based method
- Comparable with videopretrained method.

Table 1. Ablation studies on different datasets. For MSRVTT and DiDemo, we use CLIP-B/32 as the baseline and report Recall@1; for K400 and SSv2, we use CLIP-B/16 as the baseline and report Top1 Accuracy. We adopt temporal attention as our Cross-Frame module.

	Results						
Cross-Frame	Intra-Frame	Branch structure	Multi-level	MSR-VTT	DiDemo	K400	SSv2
				43.1	43.4	79.9	44
\checkmark	\checkmark			43.9	43.5	80.3	55.9
\checkmark	\checkmark	\checkmark		44.2	43.6	80.8	58.6
	\checkmark	\checkmark	\checkmark	44.3	44.5	81.0	48.1
\checkmark		\checkmark	\checkmark	43.1	43.7	80.0	55.7
\checkmark	\checkmark	\checkmark	\checkmark	46.9	46.2	82.6	65.9
+ Tes	ting Techniques	(DSL [9] or 1×3 -vie	ews)	49.7	51.4	84.2	67.6

Ablation on different components

- remove branch structure and multi-level, performance dicreased a lot > branch structure and multi-level is
 important
- removing spatial module has more impact on MSRVTT/Didemo/K400 than Sthsthv2 -> spatial modeling is benefitial to low-level knowledge transfer, low-level knowledge is benfitial to both recogniton and retrieval
- temporal module >+10% on sthsthv2, s-t module +branch structure+multi-level >+20 -> temporal module is effective, branch structure and multi-level imporve temporal modeling

Thanks!

https://arxiv.org/abs/2301.11116 https://github.com/farewellthree/STAN