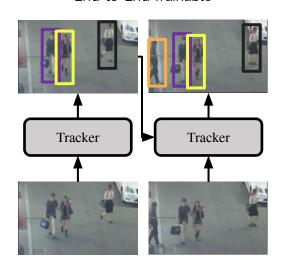
Simple Cues Lead to a Strong Multi-Object Tracker

Jenny Seidenschwarz, Guillem Brasó, Victor Castro Serrano, Ismail Elezi, Laura Leal-Taixé

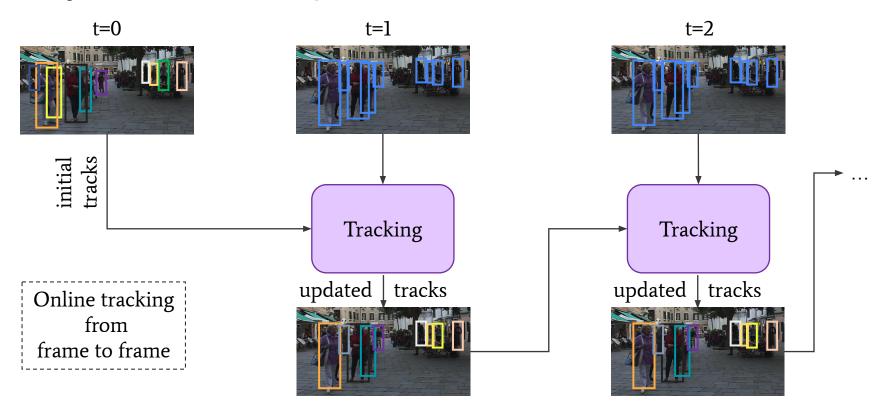
Haunting Completely End-to-End Trackers with GHOST 👻

Tracking-by-Detection

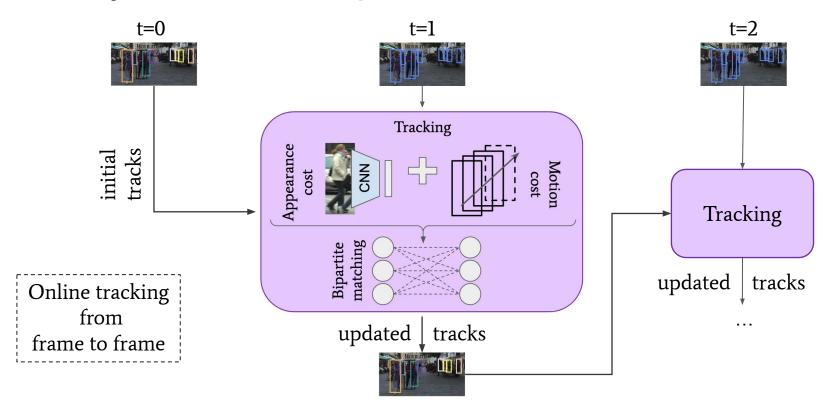
Haunting Completely End-to-End Trackers with GHOST 👻



End-to-End Trainable



Haunting Completely End-to-End Trackers with GHOST 👻



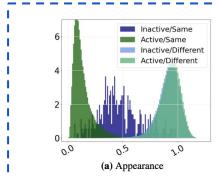
Tracking-by-Detection is highly general and shows SOTA performance if we follow key observations obtained by in-depth analysis of simple cues

Simple Online Tracking

Simple Online Tracking

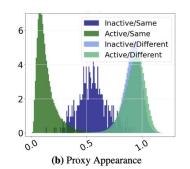
person gets ... occludes

track inactive



person gets occludes

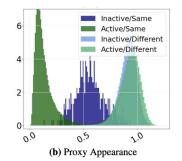
track inactive



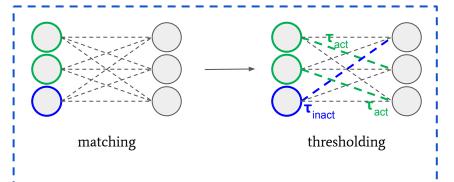
person gets occludes

track inactive

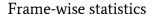
$$d_{i,k} = rac{1}{N_k} \sum_{n=1}^{N_k} d(f_i, f_k^n)$$



person gets occludes



track inactive



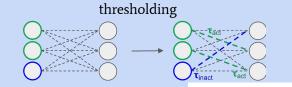
$$d_{i,k} = \frac{1}{N_k} \sum_{n=1}^{N_k} d(f_i, f_k^n)$$

D detections

$$\mu_b = \frac{1}{D} \sum_{i=0}^{D} x_i$$

$$\mu_b = \frac{1}{D} \sum_{i=0}^{D} x_i$$

$$\sigma_b = \frac{1}{D} \sum_{i=0}^{D} (x_i - \mu_b)^2$$


Features adapted to specific frame

$$\widehat{x_i} = \gamma \frac{x_i - \mu_b}{\sqrt{\sigma_b + \epsilon}} + \beta$$

1. different challenges active and inactive tracks

proxy distance

$$d_{i,k} = \frac{1}{N_k} \sum_{n=0}^{N_k} d(f_i, f_k^n)$$

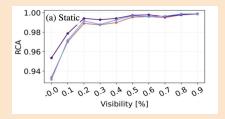
matching

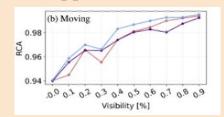
Spiced up appearance model better suited for MOT

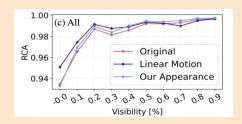
			MOT 17			ВОО		
diff $ au$	IP	DA	НОТА ↑	IDF1↑	MOTA ↑	НОТА ↑	IDF1↑	MOTA 1
			61.6	72.2	69.5	41.3	47.7	42.0
\checkmark			61.8	72.7	69.6	41.9	48.6	41.9
\checkmark	✓		62.4	73.6	69.6	42.9	50.4	43.7
\checkmark	✓	✓	63.3	75.3	69.6	43.7	51.5	43.9

MOT 17

2. highly differing image statistics

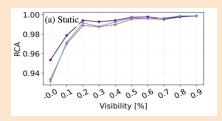

Features adapted to specific frame

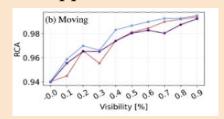

$$\widehat{x_i} = \gamma \frac{x_i - \mu_b}{\sqrt{\sigma_b + \epsilon}} + \beta$$

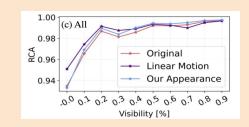

DDD

Observations Motion Model

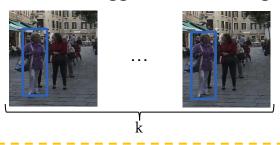
3. Linear motion model complements appearance well





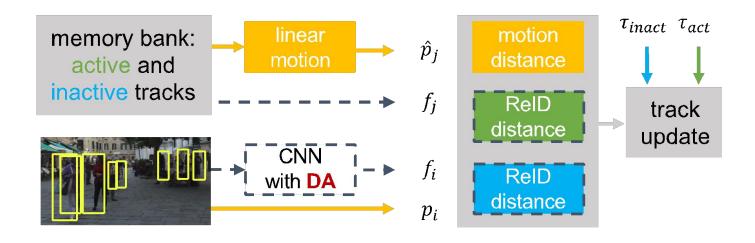


Observations Motion Model


3. Linear motion model complements appearance well

Motion still struggles with moving camera \rightarrow adaptive frames k for velocity computation

$$v_j = \frac{1}{k} \sum_{i=0}^k \frac{\Delta p}{\Delta}$$


$$d_m = IoU(p, d)$$

p predicted **d** detection

Good Old Hungarian Simple Tracker or GHOST*

*the order of the letters of the acronym does not change the product

SOTA on highly differing datasets w/o training on tracking data!

MOT₁₇

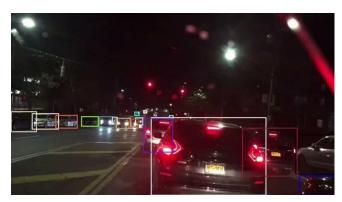
BDD100k

	НОТА ↑	IDF1 ↑	$MOTA \uparrow$	$\mathbf{IDSW}\downarrow$
Private MOT17				
CenterTrack [16]	52.2	64.7	67.8	3039
TraDeS [12]	52.7	63.9	69.1	3555
QDTrack [7]	53.9	66.3	68.7	3378
FairMOT [15]	59.3	72.3	73.7	3303
MeMOT [3]	56.9	72.5	69.0	2724
GTR [17]	59.1	71.5	75.3	2859
MOTR [13]	57.8	68.6	73.4	2439
ByteTrack* [14]	62.8	77.1	78.9	2363
ByteTrack* [14]	63.1	77.3	80.3	2196
GHOST	62.8	77.1	78.7	2325

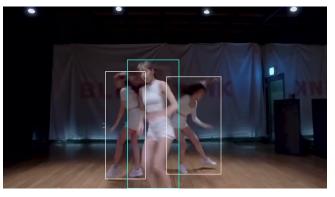
	mHOTA ↑	mIDF1 ↑	mMOTA ↑	HOTA \uparrow	IDF1↑	MOTA ↑
validation						
Yu et. al. [69]	-	44.5	25.9	-	66.8	56.9
ByteTrack [73]	45.4	54.6	45.2	61.6	70.2	68.7
QDTrack [41]	41.7	51.5	36.3	60.9	71.4	63.7
MOTR [71]	11.7	43.5	32.0	-	-	-
TETer [29]	21	53.3	39.1	92	-	-
GHOST	45.7	55.6	44.9	61.7	70.9	68.1
test						
Yu et. al. [69]	2)	44.7	26.3	14	68.2	58.3
ByteTrack [73]	-	55.8	40.1	-	71.3	69.6
QDTrack [41]	-	52.3	35.5		72.3	64.3
GHOST	46.8	57.0	39.5	62.2	72.0	68.9

MOT20

	НОТА ↑	IDF1↑	МОТА ↑	IDSW ↓
Private MOT20				
GSDT [10]	53.6	67.5	67.1	3230
FairMOT [15]	54.6	67.3	61.8	5243
MeMOT [3]	54.1	66.1	63.7	1938
MTrack [13]	-	69.2	63.5	6031
ByteTrack* [14]	60.4	74.5	74.2	925
ByteTrack* [14]	61.3	75.2	77.8	1223
GHOST	61.2	75.2	73.7	1264


DanceTrack

	HOTA \uparrow	IDF1 ↑	MOTA ↑	DetA ↑	AssA ↑
CenterTrack [79]	41.8	35.7	86.8	78.1	22.6
FairMOT [74]	39.7	40.8	82.2	66.7	23.8
QDTrack [41]	54.2	50.4	87.7	80.1	36.8
TraDeS [64]	43.3	41.2	86.2	74.5	25.4
MOTR [71]	54.2	51.5	79.7	73.5	40.2
GTR [80]	48.0	50.3	84.7	72.5	31.9
ByteTrack [73]	47.7	53.9	89.6	71.0	32.1
GHOST	56.7	57.7	91.3	81.1	39.8



SOTA on highly differing datasets w/o training on tracking data!

