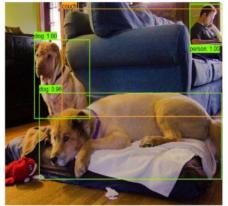
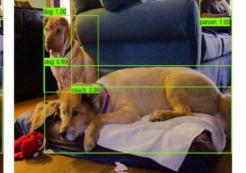


MixTeacher: Mining Promising Labels with Mixed Scale Teacher for Semi-Supervised Object Detection

Liang Liu¹, Boshen Zhang¹, Jiangning Zhang¹, Wuhao Zhang¹, Zhenye Gan¹, Guanzhong Tian³, Wenbing Zhu⁴, Yabiao Wang^{1*}, Chengjie Wang^{1,2*}, ^{1.} Youtu Lab, Tencent ^{2.} Shanghai Jiao Tong University
^{3.} Ningbo Research Institute, Zhejiang University ^{4.} Rongcheer Co., Ltd. (* indicates Corresponding authors)

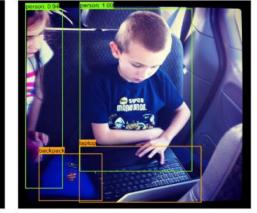
Poster: TUE-PM-310


MixTeacher Overview



- MixTeacher is a framework to address the challenge of scale variation in semi-supervised object detection.
- MixTeacher generates high-quality initial pseudo labels using a mixed-scale feature pyramid.
- MixTeacher mines low-confidence pseudo labels according to the score promotion of predictions across scales.
- MixTeacher achieves SoTA on various benchmarks under SSOD settings.

Regular Scale

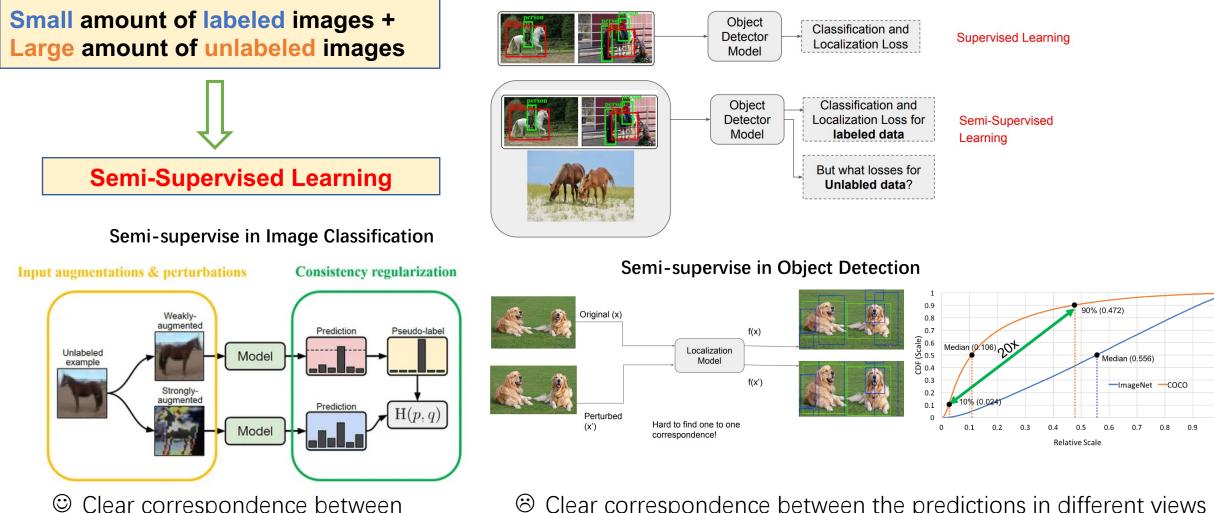


Mixed Scale

(a) Pseudo Labels Generation on Different Scales

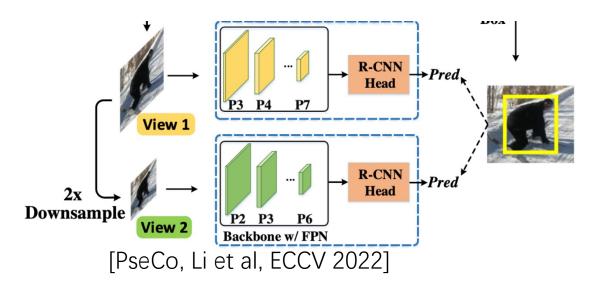
Threshold 0.7

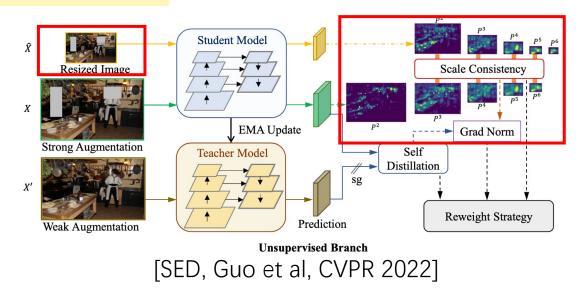
Threshold 0.9

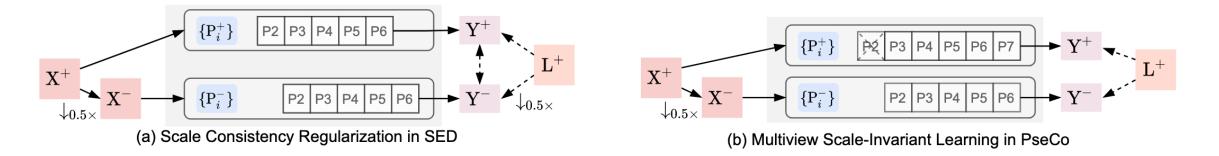

Threshold 0.7 + PLM

(b) Pseudo Labels Filtering with Different Strategies

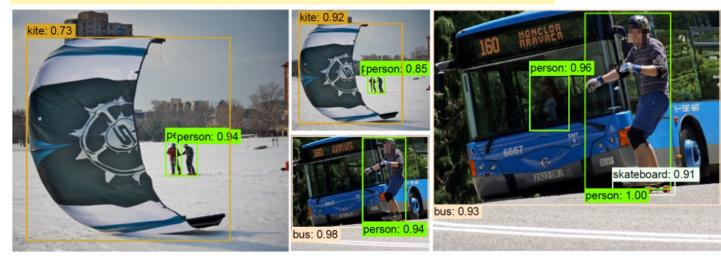
Background: Semi-Supervised Object Detection



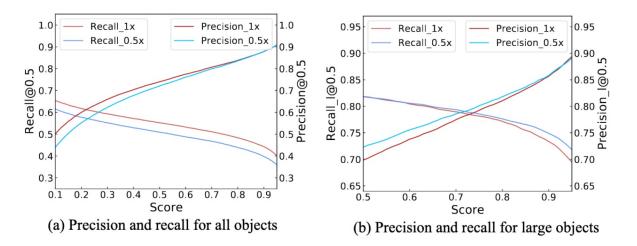

Clear correspondence between the predictions in different views Clear correspondence between the predictions in different views
Object instance scale changes dramatically in detection task


Existing Observation: Additional Scales Helps SSOD

Additional down-sampling scale input helps SSOD

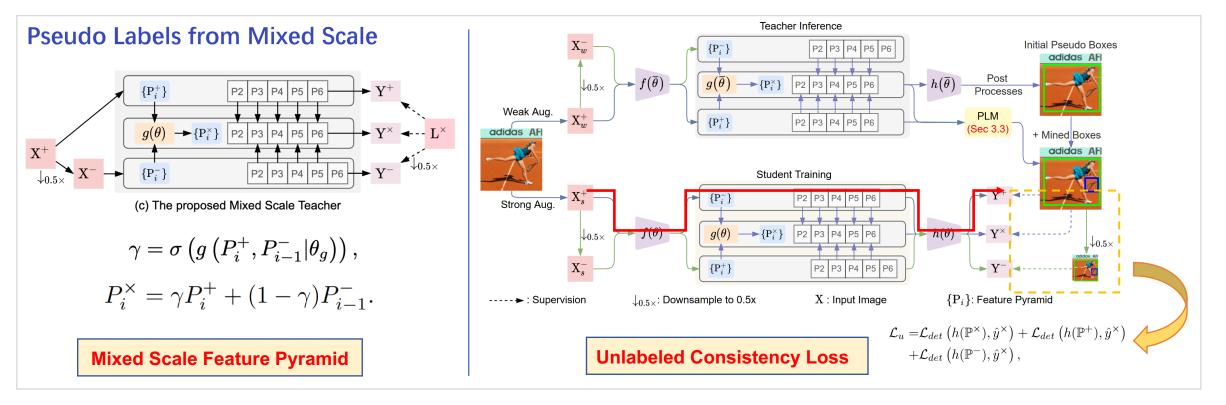


Previous methods adopt pseudo labels from large scale inputs and take additional scales as regularization.


Our Motivations: Regular Scale Pseudo Labels Are Not Always Reliable

Input size significantly affects pseudo-labels in SSOD

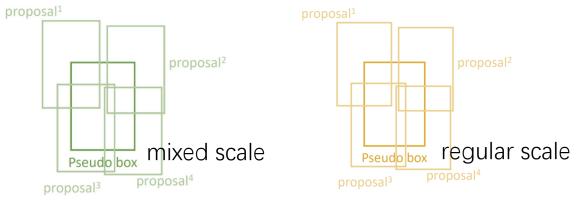
Small scale input generates better predictions on large objects.


Model test on different scales

- P⁺: regular scale
- P⁻: 0.5x down-sample scale

	mAP	AP _s	AP_m	AP_l
Test on \mathbb{P}^-	33.2	14.6	36.1	50.0
Test on \mathbb{P}^+	36.7	21.8	36.1 39.2	48.6

Method: Mixed Scale Teacher


© Efficient Training. Only an additional module of two layer MLPs is insert into the original detector.

© Fair Testing. During testing, all parts not present in the original detector are discarded.

Method: Promising Labels Mining

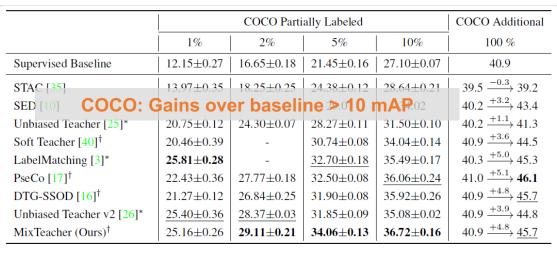
Pseudo Labels from Lower Score Predictions :

Mean score promotion for a pseudo box across scales

$$\Delta q = \frac{1}{K} \left(\sum_{i=1}^{K} h_c(b_i, \mathbb{P}^{\times} | \bar{\theta}) - \sum_{i=1}^{K} h_c(b_i, \mathbb{P}^+ | \bar{\theta}) \right)$$

Procedure:

- 1. Construct a bag of proposals for each low-confidence candidate.
- 2. Compute the mean score for mixed scale and regular scale.
- 3. Compute the gap for two scales as the mean score promotion.

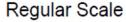

Ablation Study:

$\overline{\mathbb{P}^+}$	ature S ₽ ⁻	\mathbb{P}^{\times}	MST	PLM	mAP	AP ₅₀	AP ₇₅
					26.8	45.1	28.4
✓					33.9 (+7.1)	54.0	37.0
1	1				34.7 (+7.9)	54.7	37.8
1	1	1			34.4 (+7.4)	54.2	37.2
1	1	1	1		36.2 (+9.4)	56.5	39.5
✓	1	1	1	1	36.7 (+9.9)	57.0	39. 7

Table 5. Analysis of various components of proposed approach. MST indicates generating pseudo labels from the mixed scale feature pyramid. PLM indicates promising labels mining.

Results of MixTeacher

Experimental comparison: Compared with 10+ methods on VOC 07, 12 and COCO 14 data sets, the best mAP has been achieved.



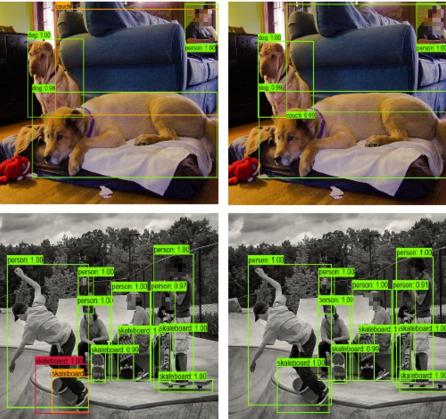
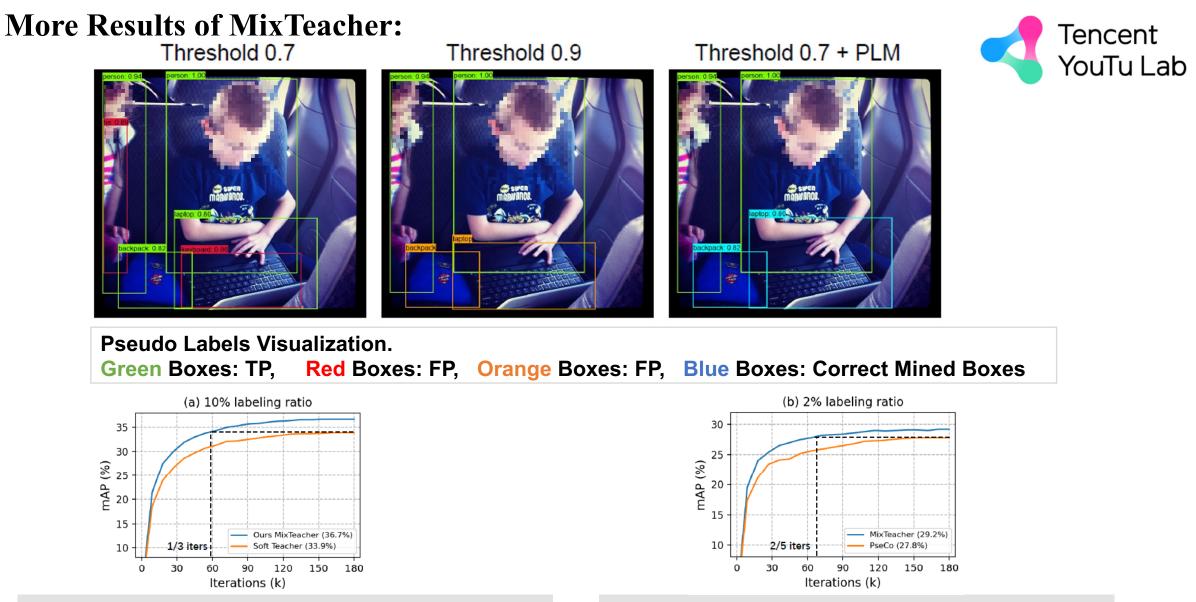

	AP_{50}	AP _{50:95}
Supervised [25]	72.63	42.13
STAC [35]	77.45 (+4.82)	44.64 (+2.51)
VOC: Gains ov	er9.94 (+8.31) er9.94 (\$\$8.31)	53.04 13 mAP
LabelMatching [3]	85.48 (+12.85)	55.11 (+12.98)
MixTeacher (Ours)	85.85 (+13.22)	56.25 (+14.12)

Table 3. Experimental results on the VOC Additional setting.

	AP_{50}	AP _{50:95}	Mixed Scale Teacher with FCOS				os
Supervised [25]	72.63	42.13		Cuom			
STAC [35]	79.08 (+6.45)	46.01 (+3.88)		1%	2%	5%	10%
Humble Teacher [36]	81.29 (+8.66)	54.41 (+12.28)	Dense Teacher [46]	22.38	27.20	33.01	37.13
Rethinking Pse [18]	79.60 (+6.79)	56.10 (+13.97)	Unbiased Teacher v2 [26]	22.71	26.03	30.08	32.61
LabelMatching [†] [3]	85.81 (+13.18)	55.50 (+13.37)	MixTeacher (Ours)	23.83	27.88	33.42	36.95
MixTeacher (Ours)	86.58 (+13.95)	56.83 (+14.70)		-0.00			50.75

Table 4. Experimental results on the VOC Mixture setting.



(a) Pseudo Labels Generation on Different Scales

Pseudo-labels from mixed scales are more accurate than regular scales

Mixed Scale

Achieves **Baseline** Performance with 1/3 Iterations

Achieves SOTA Performance with 2/5 Iterations

MixTeacher: Mining Promising Labels with Mixed Scale Teacher for Semi-Supervised Object Detection

Thanks

Poster: TUE-PM-310