Masked Auto-Encoders Meet Generative Adversarial Networks and Beyond

Zhengcong Fei, Mingyuan Fan, Li Zhu, Junshi Huang*, Xiaoming Wei, Xiaolin Wei

2023年5月

Short Summary

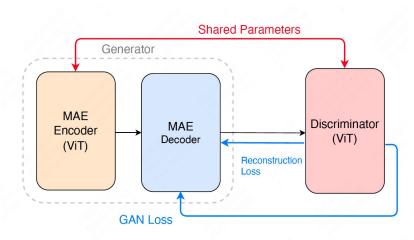


Figure 1. Fast overview of **GAN-MAE** framework.

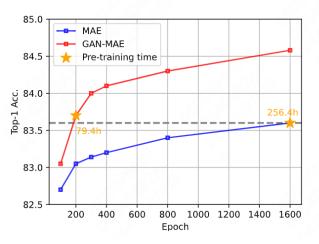
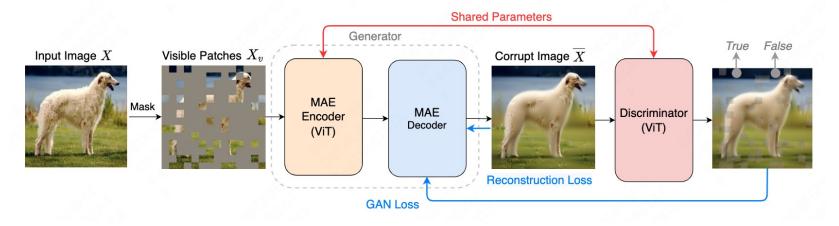


Figure 2. **Performance comparison** in different pre-training epochs for ImageNet-1K Fine-tuning top-1 accuracy.

GAN-MAE Framework



Main components:

- 1. Image patch generator
- 2. Image patch discriminator
- 3. Adversarial training process

^{*}parameter sharing in backbone

GAN-MAE Framework

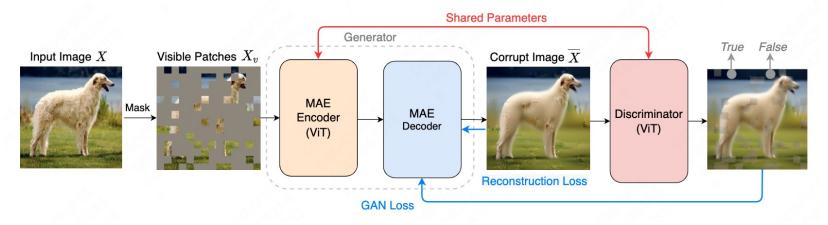


Image Patch generator

- Identical to a standard MAE;
- Overall, the generator randomly masks some image patches M and encodes the remaining visible patches X_v in to hidden states H_v , and the masked patches are then reconstructed as \tilde{X}_m :

$$H_v = f_e(X_v, M)$$

$$\tilde{X}_m = f_d(H_v, M)$$

GAN-MAE Framework

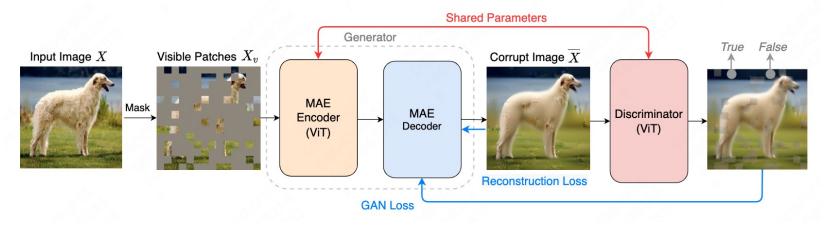


Image Patch Discriminator

- Identical to a ViT for classification;
- For a patch index k and corrupted image sequence $\overline{X} = \{X_v, \widetilde{X}_m\}$, the discriminator predicts whether the patch token x^k is real or synthesized as binary classification task:

$$D(\bar{X}, k) = p_{disc}(y^k | \bar{X}, k)$$

Adversarial Training Process

- At each epoch, iteration is conducted in two steps;
- Train only the generator with L_{qen}:

$$\begin{split} \mathbf{L}_{gen}(X,\theta_{mae}) &= L_{mae}(X,\theta_{mae}) + \gamma L_{adv}(X,\theta_{mae}) \\ L_{mae}(X,\theta_{mae}) &= \sum_{\mathbf{k} \in M} \left| \left| \tilde{x}^k - x^k \right| \right|_2^2 \\ L_{adv}(X,\theta_{mae}) &= logD(X_v) + \log(1 - D(\tilde{X}_m)) \\ \text{In between, } \gamma \text{ is a adaptive factor} \end{split}$$

Train the discriminator with L_{disc}:

```
L_{disc}(\bar{X}, \theta_{disc})
= \sum_{k=1}^{N} -y^k log D(\bar{X}, k) - (1 - y^k) log (1 - D(\bar{X}, k))
```

```
Algorithm 1: Adversarial training for GAN-MAE

Data: Training data \mathcal{D}_{train}, total epoch number N_e,
```

GAN-MAE model with generator parameters θ_{mae} and discriminator parameters θ_{disc} ;

1 share weights between generator and discriminator backbones;

```
2 while n_e < N_e do
       for x^i \in \mathcal{D}_{train} do

▷ generator training;

            sample masking set M^i and mask image x^i;
            predict masked image patches \tilde{x}_{m}^{i};
            compute loss L_{qen};
            loss backward for updating \theta_{mae};
            construct \overline{x}^i based on x^i and \tilde{x}_m^i;
10
            comput loss L_{disc};
11
            loss backward for updating \theta_{disc};
13
       end
       n_e + = 1;
15 end
```

General Comparisons

Table 1. **End-to-end fine-tuning on ImageNet-1K.** We report the fine-tuning top-1 accuracy for classification in different vision transformer architectures and results show that GAN-MAE outperforms previous self-supervised methods.

Model	Pre-train data	Pre-train epochs	ViT-S	ViT-B	ViT-L
Supervised [59]	IN1K w/ labels	300	79.7	81.8	82.6
DINO [9]	IN1K	800	81.5	82.8	- 6
MoCo v3 [14]	IN1K	300	81.4	83.2	84.1
BEiT [3]	IN1K+DALLE	800	81.7	83.2	85.2
MSN [1]	IN1K	600	-	83.4	\$ 1 \ \ <u>1</u>
iBOT [77]	IN1K	800	82.3	84.0	84.8
BootMAE [20]	IN1K	800	-	84.2	85.9
MAE [28]	IN1K	800	-	83.4	85.4
MAE [28]	IN1K	1600	- (83.6	85.9
GAN-MAE	IN1K	300	82.2	84.0	85.6
GAN-MAE	IN1K	800	82.4	84.3	86.1

Case Study

Table 2. **Robustness Evaluation** on the four ImageNet-variants: ImageNet-C, ImageNet-A, ImageNet-R, and ImageNet-Sketch.

Model	IN-C (mCE ↓)	IN-A (top-1 ↑)	IN-R (top-1 ↑)	IN-Sketch (top-1 ↑)
Supervised [53]	42.5	35.8	48.7	36.0
MAE [28]	51.7	35.9	48.3	34.5
GAN-MAE	49.5	36.8	49.6	35.9

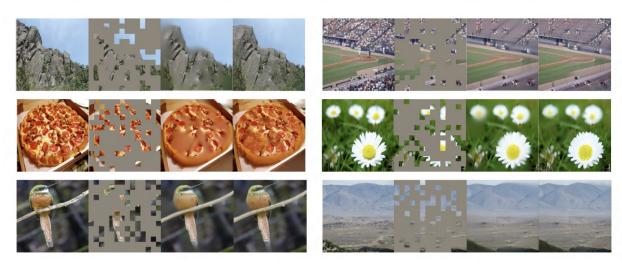


Figure 3. Figure 2. Qualitative analysis for patch reconstruction.

Model Analysis

Table 3. Effect of **parameter sharing** in GAN-MAE framework. Results demonstrate that shared parameters for backbone benefits both memory cost and performance improvement.

Models	Epoch	Mask ratio	FT
Generator	800	75%	83.9
Discriminator	800	75%	84.2
Shared	800	75%	84.3
Generator	1600	75%	84.4
Discriminator	1600	75%	84.4
Shared	1600	75%	84.6

Table 4. Effect of different training schemes.

Models	Epoch	Mask ratio	FT	GPU Time
Two-stage	300	75%	82.0	94.3h
Combined	300	75%	82.2	90.9h
Adversarial	300	75%	82.2	118.8h
Two-stage	800	75%	84.0	252.2h
Combined	800	75%	84.1	240.5h
Adversarial	800	75%	84.3	317.5h

Downstream Tasks

Table 3. **Semantic segmentation** comparison on the ADE20K dataset for mIoU (%) metric with the ViT-B backbone.

Models	Pre-train data	Epochs	mIoU
Supervised [28]	IN1K w/ labels	300	47.4
MoCo v3 [14]	IN1K	300	47.3
BEiT [3]	IN1K+DALLE	800	47.1
MAE [28]	IN1K	800	47.6
MAE [28]	IN1K	1600	48.1
BootMAE [20]	IN1K	800	49.1
GAN-MAE	IN1K	800	49.5

Table 4. **COCO object detection and segmentation** using Mask R-CNN framework with ViT-B backbone.

Models	Pre-train data	AP-box	AP-mask
Supervised [28]	IN1K w/ labels	44.1	39.8
MoCo v3 [14]	IN1K	44.9	40.4
BEiT [3]	IN1K+DALLE	46.3	41.1
MSN [1]	IN1K	46.6	41.5
iBOT [77]	IN1K	47.3	42.2
MAE [28]	IN1K	47.2	42.0
BootMAE [20]	IN1K	48.5	43.4
GAN-MAE	IN1K	49.0	43.8