

Unsupervised 3D Point Cloud Representation Learning by Triangle Constrained Contrast for Autonomous Driving

Bo Pang, Hongchi Xia, Cewu Lu

Shanghai Jiao Tong University

- We aim to provide a unified unsupervised representation learning method that takes all the sensors of different modalities and both space-time dimensions into account.
- We design an automatic method to dig pixel/point-level multi-modality contrastive pairs across time.
- With the proposed TriCC pretraining method, we obtain effective 3D Lidar representations that perform SOTA on 3D segmentation and detection.

- We aim to provide a unified unsupervised representation learning method that takes all the sensors of different modalities and both space-time dimensions into account.
- We design an automatic method to dig pixel/point-level multi-modality contrastive pairs across time.
- With the proposed TriCC pretraining method, we obtain effective 3D Lidar representations that perform SOTA on 3D segmentation and detection.

Illustration of Triangle consistent constraint

- We aim to provide a unified unsupervised representation learning method that takes all the sensors of different modalities and both space-time dimensions into account.
- We design an automatic method to dig pixel/point-level multi-modality contrastive pairs across time.
- With the proposed TriCC pretraining method, we obtain effective 3D Lidar representations that perform SOTA on 3D segmentation and detection.

• With the proposed TriCC pretraining method, we obtain effective 3D Lidar representations that perform SOTA on 3D segmentation and detection.

Pre-training Method	Pretrain	Linear	Fine-tuning				
Tie-training Method	Modality	100%	1%	10%	100%		
Res16UNet as the backbone							
fine-tune from scratch	-	8.1	30.3	56.6	74.2		
PointContrast [78]	Р	21.9	32.5 (+2.2)	57.1 (+0.5)	74.3 (+0.1)		
DepthContrast [88]	Р	22.1	31.7 (+1.4)	57.3 (+0.7)	74.1 (-0.1)		
PPKT [44]	P, C	36.4	37.8 (+7.5)	59.2 (+2.6)	73.8 (-0.4)		
SLidR [59]	P, C	38.0	38.2 (+7.9)	58.8 (+2.2)	74.6 (+0.4)		
TriCC(ours), 20 epoch	P, C	37.8	40.8 (+10.5)	60.2 (+3.6)	75.3 (+1.1)		
TriCC(ours), 50 epoch	P, C	38.0	41.2 (+10.9)	60.4 (+3.8)	75.6 (+1.4)		
VoxelNet as the backbone							
fine-tune from scratch	-	2.6	24.5	43.1	53.9		
SLidR [59]	P, C	33.5	32.1 (+7.6)	45.4 (+2.3)	54.3 (+0.4)		
TriCC (ours), 20 epoch	P, C	33.6	34.0 (+9.5)	46.7 (+3.6)	56.0 (+2.1)		

Semantic segmentation on nuScenes

Pretrain	Det	Fine-tuning						
Tietrain	Det.	Easy	Moderate	Hard				
mAP@R11 w/o re	oad pla	nes						
random	Sec.	73.3	63.2	60.3				
SwAV [9]	Sec.	73.2 (-0.1)	64.0 (+0.8)	60.9(+0.6)				
DeepCluster [8]	Sec.	73.2 (-0.1)	63.4 (+0.2)	60.1 (-0.2)				
STRL [34]	Sec.	74.0 (+0.7)	63.9(+0.7)	60.9 (+0.6)				
SLidR [59]	Sec.	73.6 (+0.3)	64.6 (+1.4)	$61.5 \ (\text{+1.2})$				
CO^3 [12]	Sec.	74.4 (+1.1)	64.4 (+1.2)	60.9(+0.6)				
TriCC (ours)	Sec.	75.0 (+1.7)	65.7 (+2.5)	62.2 (+1.9)				
mAP@R40 with road planes								
random	PV	81.3	70.6	66.1				
Point Con. [78]	PV	82.8 (+1.5)	71.6 (+1.0)	67.5 (+1.4)				
GCC-3D [41]	PV	-	71.3 (+0.7)	-				
STRL [34]	PV	-	71.5 (+0.9)	-				
SLidR [59]	PV	82.9 (+1.6)	71.9 (+1.3)	68.0 (+1.9)				
Pro. Con. [84]	PV	84.5 (+3.2)	72.9 (+2.3)	69.0 (+2.9)				
TriCC (ours)	PV	84.1 (+2.8)	73.3 (+2.7)	69.4 (+3.3)				

Motivation

- 1. Due to the difficulty of annotating the 3D LiDAR data of autonomous driving, an efficient unsupervised 3D representation learning method is important.
- 2. Currently there is no method can uniformly learn representations from all the information which can be accessed in auto-driving: camera and Lidar ones with the temporal dimension.
- 3. Dense positive pairs are difficult to obtain on multi-modality temporal information. We need an automatic pairing mechanism for many tasks.

Method Cycle consistent constraint

To get the dense positive pairs across multi-modality and temporal dimension, we design the Cycle Consistent Constraint to automatically dig them:

• Given a group of feature maps $\mathbf{X} = {\mathbf{x}_i \in \mathbf{R}^{n_i \times c}, i = 1, ..., k}$, we first define the transition matrix between two feature maps:

Similarity probability between two feature maps, we adopt cosine similarity in this work.

$$\mathbf{M} = \{\mathbf{m}_{i,j} = \operatorname{sm}(\langle \mathbf{x}_i, \mathbf{x}_j \rangle | \tau) \in \mathbb{R}^{n_i \times n_j} \}$$

• Then we need the transition matrices of adjacent features to form a cycle:

Accumulated multiplication
of all the transition matrix
$$\mathbf{S} \in \mathbb{R}^{n_1 \times n_1} = (\prod_{i=1}^{k-1} \mathbf{m}_{i,i+1}) \mathbf{m}_{k,1} = P(\mathbf{x_1} | \mathbf{x_1})$$

Method Cycle consistent constraint

To get the dense positive pairs across multi-modality and temporal dimension, we design the Cycle Consistent Constraint to automatically dig them:

• With the cycle transition matrix **S**, the consistent constraint can be optimized by:

Method Triplet Contrast

With the automatically found positive pairs among the three feature maps, we can conduct the contrastive learning between each two of them.

Method Pipeline

Experiments nuScenes semantic segmentation

Dra training Mathad	Pretrain	Linear	Fine-tuning						
Pre-training Method Res16UNet as the backbonk fine-tune from scratch PointContrast DepthContrast PPKT SLidR	Modality	100%	1%	5%	10%	25%	100%		
Res16UNet as the backbone									
fine-tune from scratch	-	8.1	30.3	47.7	56.6	64.8	74.2		
PointContrast	Р	21.9	32.5 (+2.2)	-	57.1 (+0.5)	-	74.3 (+0.1)		
DepthContrast	Р	22.1	31.7 (+1.4)	-	57.3 (+0.7)	-	74.1 (-0.1)		
PPKT	P, C	36.4	37.8 (+7.5)	51.7 (+4.0)	59.2 (+2.6)	66.8 (+2.0)	73.8 (-0.4)		
SLidR	P, C	38.0	38.2 (+7.9)	52.2 (+4.5)	58.8 (+2.2)	66.2 (+1.4)	74.6 (+0.4)		
TriCC(ours), 20 epoch	P, C	37.8	40.8 (+10.5)	54.1 (+6.4)	60.2 (+3.6)	67.6 (+2.8)	75.3 (+1.1)		
TriCC(ours), 50 epoch	Р , С	38.0	41.2 (+10.9)	54.1 (+6.4)	60.4 (+3.8)	67.6 (+2.8)	75.6 (+1.4)		
VoxelNet as the backbone									
fine-tune from scratch	-	2.6	24.5	35.7	43.1	48.1	53.9		
SLidR	P, C	33.5	32.1 (+7.6)	40.3 (+4.6)	45.4 (+2.3)	50.3 (+2.2)	54.3 (+0.4)		
TriCC (ours), 20 epoch	P, C	33.6	34.0 (+9.5)	42.0 (+6.3)	46.7 (+3.6)	51.6 (+3.5)	56.0 (+2.1)		

Comparisons of different pre-training methods and different backbones under the linear probing and few-shots finetuning evaluation protocols on **nuScenes segmentation**.

Experiments KITTI 3D Detection

We also transfer the pretrained representation on 3D detection task, it is seen that TriCC provides a 2.5 mAP and 2.7 mAP performance boost over the random initialization for SECOND and PV-RCNN models.

Comparisons with SOTA 3D representation learning methods on KITTI fine-tuning with 100% annotations

Dratzain	Dat	Fine-tuning					
Flettalli	Det.	Easy	Moderate	Hard			
mAP@R11 w/o r	oad pla	nes					
random	Sec.	73.3	63.2	60.3			
SwAV	Sec.	73.2 (-0.1)	64.0 (+0.8)	60.9 (+0.6)			
DeepCluster	Sec.	73.2 (-0.1)	63.4 (+0.2)	60.1 (-0.2)			
BYOL	Sec.	71.1 (-2.2)	60.4 (-2.8)	57.0 (-3.3)			
Point Con.	Sec.	72.7 (-0.6)	62.7 (-0.5)	59.2 (-1.1)			
GCC-3D	Sec.	73.9 (+0.6)	63.5 (+0.3)	59.8 (-0.5)			
STRL	Sec.	74.0 (+0.7)	63.9 (+0.7)	60.9 (+0.6)			
SLidR	Sec.	73.6 (+0.3)	64.6 (+1.4)	61.5 (+1.2)			
CO^3	Sec.	74.4 (+1.1)	64.4 (+1.2)	60.9 (+0.6)			
TriCC (ours)	Sec.	75.0 (+1.7)	65.7 (+2.5)	62.2 (+1.9)			
mAP@R40 with	road pla	anes					
random	PV	81.3	70.6	66.1			
Point Con.	PV	82.8 (+1.5)	71.6(+1.0)	67.5 (+1.4)			
GCC-3D	PV	-	71.3 (+0.7)	-			
STRL	PV	-	71.5 (+0.9)	-			
SLidR	PV	82.9 (+1.6)	71.9 (+1.3)	68.0 (+1.9)			
Pro. Con.	PV	84.5 (+3.2)	72.9 (+2.3)	69.0 (+2.9)			
TriCC (ours)	PV	84.1 (+2.8)	73.3 (+2.7)	69.4 (+3.3)			

Experiments More results

Pre-training Method	Fine-tuning				Fine-tuning					
	1%	5%	10% Pretrain		5% label		10% label		20% label	
Res16UNet as the backb	one				mAP	NDS	mAP	NDS	mAP	ND
fine-tune from scratch	39.5	52.1	55.6	VoxelNet + Cente	erPoint					
PPKT [44]	43.9(+4.4)	53 .1 (+1.0)	57.3 (+17)	random	38.0	44.3	46.9	55.5	50.2	59.7
SLidR [59]	44.6 (15.1)	52.6 (10.5)	56.0 (10.4)	Point Con. [78]	39.8	45.1	47.7	56.0	-	-
TriCC (aura) 20 ana ah	45.9 (+5.1)	55.7 (-0.5)	58 4 (2 0)	GCC-3D [41]	41.1	46.8	48.4	56.7	-	-
Trice (ours), 20 epoch	43.8 (+6.3)	33.7 (+3.6)	38.4 (+2.8)	SLidR [59]	43.3	52.4	47.5	56.8	50.4	59.9
TriCC (ours), 50 epoch	45.9 (+6.4)	55.9 (+3.8)	59.0 (+3.4)	TriCC, 20epoch	44.6	54.4	48.9	58.1	50.9	60.3
VoxelNet as the backbone			VoxelNet + SECC	OND						
fine-tune from scratch	28.8	40.8	46.4	random	35.8	45.9	39.0	51.2	43.1	55.7
SLidR [59]	35.2 (+6.4)	45.5 (+4.7)	48.6 (+2.2)	SLidR [59]	36.6	48.1	39.8	52.1	44.2	56.3
TriCC (ours), 20 epoch	36.5 (+7.7)	46.8 (+6.0)	49.8 (+3.4)	TriCC, 20epoch	37.8	50.0	41.4	53.5	45.5	57.7

Few-shots fine-tuning segmentation results on SemanticKITTI

Few-shots fine-tuning 3D detection results on nuScenes

flat.sidewalk flat.terrain static.manmade static.vegetation vehicle.ego

Image

Point Cloud t

flat.sidewalk flat.terrain static.manmade static.vegetation vehicle.ego

Image

Point Cloud t

Labels

 $\overline{}$ +Point Cloud t

Thanks

