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Overview

• We aim to provide a unified unsupervised 

representation learning method that takes all 

the sensors of different modalities and both 

space-time dimensions into account.

• We design an automatic method to dig 

pixel/point-level multi-modality contrastive 

pairs across time.

• With the proposed TriCC pretraining method, 

we obtain effective 3D Lidar representations 

that perform SOTA on 3D segmentation and

detection.
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• We aim to provide a unified unsupervised representation learning method that takes all the 

sensors of different modalities and both space-time dimensions into account.

• We design an automatic method to dig pixel/point-level multi-modality contrastive pairs 

across time.

• With the proposed TriCC pretraining method, we obtain effective 3D Lidar representations 

that perform SOTA on 3D segmentation and detection.

Overview

Semantic segmentation on nuScenes

3
D

 o
b
je

c
t d

e
te

c
tio

n
 re

s
u
lts

 o
n
 K

IT
T

I



Motivation

1. Due to the difficulty of annotating the 3D LiDAR data of autonomous driving, an efficient 

unsupervised 3D representation learning method is important.

2. Currently there is no method can uniformly learn representations from all the information 

which can be accessed in auto-driving: camera and Lidar ones with the temporal dimension.

3. Dense positive pairs are difficult to obtain on multi-modality temporal information. We need 

an automatic pairing mechanism for many tasks. 

Figure from nuscenes.org



Method Cycle consistent constraint

To get the dense positive pairs across multi-modality and temporal dimension, we design the 

Cycle Consistent Constraint to automatically dig them:

• Given a group of feature maps 𝐗 = {𝐱𝑖 ∈ 𝐑𝑛𝑖×𝑐 , 𝑖 = 1, … , 𝑘}, we first define the transition 

matrix between two feature maps:

• Then we need the transition matrices of adjacent features to form a cycle:

Similarity probability between two feature 

maps, we adopt cosine similarity in this work.

Accumulated multiplication 

of all the  transition matrix Connect the tail and head to form a cycle



Method Cycle consistent constraint

To get the dense positive pairs across multi-modality and temporal dimension, we design the 

Cycle Consistent Constraint to automatically dig them:

• With the cycle transition matrix 𝐒, the consistent constraint can be optimized by:

• In our auto-driving scene, the feature maps are:

Identity matrix
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Method Triplet Contrast

With the automatically found positive pairs among the three feature maps, we can conduct the 

contrastive learning between each two of them. 

• Take 𝐂𝑡 and 𝐏𝑡+1 as an example:  

• The total contrastive loss is:
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The 𝑞th feature vector 

in the feature map
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Method Pipeline



Experiments  nuScenes semantic segmentation

Comparisons of different pre-training methods and different backbones under the linear probing and few-shots fine-
tuning evaluation protocols on nuScenes segmentation.



Experiments  
KITTI 3D Detection

Comparisons with SOTA 3D representation learning 
methods on KITTI fine-tuning with 100% annotations

We also transfer the pretrained

representation on 3D detection task, it is

seen that TriCC provides a 2.5 mAP and

2.7 mAP performance boost over the

random initialization for SECOND and PV-

RCNN models.
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Experiments  More results

Few-shots fine-tuning segmentation results on SemanticKITTI Few-shots fine-tuning 3D detection results on nuScenes



Experiments  Vis analysis



Experiments  Vis analysis
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Thanks
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