

On the Difficulty of Unpaired Infrared-to-Visible Video Translation: Fine-Grained Content-Rich Patches Transfer

Zhenjie Yu¹, Shuang Li^{1,⊠}, Yirui Shen¹, Chi Harold Liu¹, Shuigen Wang² ¹Beijing Institute of Technology ²Yantai IRay Technologies Lt. Co. {zjyu, shuangli, yiruishen, chiliu}@bit.edu.cn shuigen.wang@iraytek.com

Clear day

Visible camera

Foggy day

Translation Task:

Subsequent Tasks (e.g., object detection, semantic segmentation)

Overview

- Unpaired infrared-to-visible video translation.
- > We achieve a fine-grained content-rich patches transfer.
- > The experimental results on subsequent tasks confirm the success of translation.

Infrared

Generated Results

Q1: What are the **content-rich patches**?

Content-rich Patches

VS.

Content-lacking Patches

Visual Details!

Q2: Why are the content-rich patches **not fine-grained**?

Q2: Why are the content-rich patches **not fine-grained**?

Example:

Q2: Why are the content-rich patches **not fine-grained**?

GradCAM++

Equally optimization on all patches

+Long-tail effect on images

П

Prejudice on optimization

Output

ROMA

Ours

Q3: What can we do to address the challenging issue?

Key idea of the CPTrans

- 1. Find the content-rich patches.
- 2. Augmenting the model's focus on these patches.

- \succ Find the content-rich patches.
 - Gradients from different content patches tend to vary [1, 2].
 - Real-world training data usually exhibits long-tailed distribution [3, 4].
 - The optimization of the model is **more favorable to the content-lacking regions** and diverges from the optimization of the content-rich regions.

The most deviated parts of patches without Content-aware Optimization.

[1] Aleksandar Armacki, Dragana Bajovic, Dusan Jakovetic, and Soummya Kar. Gradient based clustering. In ICML, pages 929–947, 2022.

[2] Michael Rapp, Eneldo Loza Mencía, Johannes Füurnkranz, and Eyke Hüullermeier. Gradient-based label binning in multi-label classification. In ECML/PKDD, pages 462–477, 2021.

[3] Shuang Li, Kaixiong Gong, Chi Harold Liu, Yulin Wang, Feng Qiao, and Xinjing Cheng. Metasaug: Meta semantic augmentation for long-tailed visual recognition. In CVPR, pages 5212–5221, 2021. [4] Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin. Adversarial robustness under long-tailed distribution. In CVPR, pages 8659–8668, 2021.

\succ Find the content-rich patches.

\succ Find the content-rich patches.

 \succ Augmenting the model's focus on these patches.

 \succ Augmenting the model's focus on these patches.

$$\delta_{i} = \cos\left(\nabla_{\theta_{D}} \log p_{i}, \nabla_{\theta_{D}} \frac{1}{N} \sum_{j=1}^{N} \log p_{j}\right), \qquad w_{i} = \frac{\lambda_{inc}}{\exp(|\delta_{i}|)}$$

$$\nabla_{\theta_D} \mathcal{L}_{adv}^{patch} = \mathbb{E}_{y} \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta_D} \log p_i \right] + \mathbb{E}_{x} \left[\frac{1}{N} \sum_{j=1}^{N} \nabla_{\theta_D} \log \left(1 - \tilde{p}_j \right) \right] \implies \widetilde{w}_i = \frac{\lambda_{inc}}{\exp(|\tilde{\delta}_i|)}$$

 $w_i \nabla_{\theta} \log p_i = \nabla_{\theta} w_i \log p_i, \qquad \widetilde{w}_i \nabla_{\theta} \log \widetilde{p}_i = \nabla_{\theta} \widetilde{w}_i \log \widetilde{p}_i$

Content-aware
Optimization

$$\mathcal{L}_{co-adv}^{patch} = \mathbb{E}_{\mathcal{Y}} \left[\frac{1}{N} \sum_{i=1}^{N} w_i \log p_i \right] + \mathbb{E}_{\mathcal{X}} \left[\frac{1}{N} \sum_{j=1}^{N} \widetilde{w}_j \log \left(1 - \widetilde{p}_j \right) \right]$$

 \succ Augmenting the model's focus on these patches.

$$\delta_{i} = \cos\left(\nabla_{\theta_{D}} \log p_{i}, \nabla_{\theta_{D}} \frac{1}{N} \sum_{j=1}^{N} \log p_{j}\right), \qquad w_{i} = \frac{\lambda_{inc}}{\exp(|\delta_{i}|)}$$

Content-aware Temporal Normalization

Randomly Generated Fake Flow

Weight Map w

Content-aware Temporal Normalization

Warped Output

Randomly Generated Fake Flow

Input Weight Map w

Content-aware Temporal Normalization

Warped Output

Content-aware **Optical Flow**

G

Warped Input

Overview of CPTrans Framework

Dataset: InfraredCity-Adverse

Snow

Figure 4. Qualitative comparisons with different methods on diverse scenes, including clearday, overcast, rain, and snow, respectively, from top to bottom. Our outputs show cleaner and sufficient visual information compared with other results, especially on the adverse scenes. Additionally, our CPTrans dramatically improves the quality of content-rich patches. Best view when zoom in.

Table 1. Comparison on InfraredCity-Lite. Our method achieve state-of-the-art scores with respect to both FID and KID on all scenes.

	Traffic																
Method	City					Highway						211		Monitoring			
	clear		over	overcast		all		clear		overcast		all		all			
	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓	
CUT [31]	0.5809	5.9174	0.5607	5.2185	0.6086	7.6174	0.4544	4.4742	0.5133	5.6331	0.4739	6.2903	0.4089	1.8202	0.9785	1.9126	
CycleGAN [19]	0.6299	6.1114	0.5879	5.9409	0.7125	6.3001	0.4787	4.6475	0.5489	5.4571	0.4920	4.6128	0.4204	2.0781	0.8129	0.8728	
F/LSeSim [51]	0.4984	3.9748	0.5369	6.1659	0.4834	4.3672	0.5108	5.9615	0.5288	5.2294	0.4809	4.9801	0.2724	1.9895	0.8984	0.8283	
Recycle-GAN [3]	0.5942	5.3031	0.5974	6.2001	0.5969	5.3129	0.5173	6.1773	0.5998	8.2207	0.5101	5.2925	0.3431	3.0240	0.9433	0.9928	
Mocycle-GAN [7]	0.5117	4.5128	0.5346	5.2772	0.5011	4.0732	0.5029	5.5982	0.5976	7.4907	0.4791	6.1446	0.3163	3.1973	0.7298	1.4637	
UnsupRecycle [40]	0.7519	5.7289	0.9816	7.5554	0.8050	5.7288	0.4907	6.3411	0.5328	6.1268	0.4307	5.9160	0.3206	2.9047	0.8142	0.9785	
I2V-GAN [25]	0.5052	4.2976	0.5574	5.9438	0.4649	4.1209	0.5064	5.9077	0.5105	6.3017	0.4515	4.7805	0.2872	2.4127	0.7039	1.8313	
ROMA [49]	0.4018	3.8081	0.5149	5.7762	0.3929	3.3665	0.3325	3.9694	0.3823	4.9334	0.3444	4.3441	0.2002	0.6787	0.5488	0.7058	
baseline	0.4332	4.0315	0.5258	5.8336	0.4038	3.5282	0.3474	4.3295	0.4245	5.3277	0.3916	4.5129	0.2324	1.0197	0.5731	0.8114	
Ours w/o co	0.3890	3.2683	0.4762	5.0883	0.3891	3.3113	0.3453	3.3077	0.3712	4.3453	0.3389	3.7821	0.1835	0.4210	0.5303	0.6828	
Ours w/o ctn	0.3824	3.3423	0.4779	4.9855	0.3867	3.5157	0.3267	3.3171	0.3642	3.9793	0.3343	3.8776	0.1816	0.2665	0.4949	0.6308	
Ours	0.3728	2.7573	0.4393	4.4034	0.3632	3.1693	0.3208	2.9591	0.3475	3.0938	0.3234	3.4399	0.1738	0.1826	0.4742	0.4570	

		IF	RVI		InfraredCity-Adverse					
Method	Tra	ffic	Moni	toring	Ra	ain	Snow			
	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓	FID↓	KID↓		
CUT [31]	0.5739	5.7356	1.0893	6.2651	0.5236	5.9084	0.5244	7.8449		
CycleGAN [19]	0.6714	6.8587	0.8792	6.9381	0.5723	6.1525	0.5557	6.8426		
F/LSeSim [51]	0.4321	5.3427	0.9232	5.0691	0.5775	6.0347	0.5926	6.4179		
Recycle-GAN [3]	0.5255	4.9063	1.0609	5.0650	0.6133	5.8008	0.5730	5.9962		
Mocycle-GAN [7]	0.7911	7.1380	1.0515	6.8002	0.8872	8.1459	0.6650	6.5410		
UnsupRecycle [40]	0.6831	6.2315	0.9821	6.5123	0.7041	8.1372	0.5822	5.8795		
I2V-GAN [25]	0.4425	4.5102	0.8715	4.6178	0.5917	5.6455	0.5693	5.5491		
ROMA [49]	0.3467	3.0880	0.7334	3.3972	0.5577	2.5185	0.5393	4.9271		
baseline	0.3652	3.6835	0.7689	3.5101	0.5751	2.9861	0.5520	5.1179		
Ours w/o co	0.3193	2.7356	0.7250	2.8762	0.5056	1.9855	0.5174	3.6446		
Ours w/o CTN	0.3211	2.5720	0.7131	2.5886	0.4981	2.3112	0.4962	4.6301		
Ours	0.2936	1.9178	0.7004	2.3760	0.4760	1.7907	0.4952	2.6382		

Scenes	Nighttime Infrared	Nighttime Visible	I2V-GAN	ROMA	CPTrans (Ours)		
AP	25.0	26.1	32.2	50.1	58.1		

Thanks!

GitHub: <u>https://github.com/BIT-DA/I2V-Processing</u>