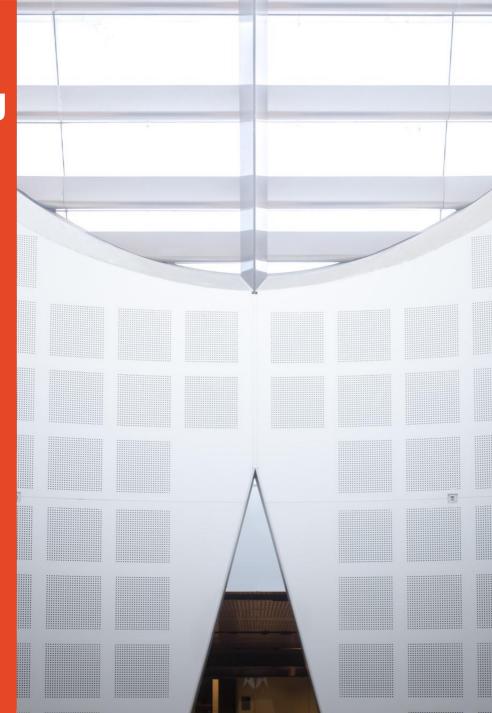
SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection

Tiange Xiang 1,Yixiao Zhang 2,Yongyi Lu 2,Alan L. Yuille 2,Chaoyi Zhang 1,Weidong Cai 1,Zongwei Zhou 2*

¹ University of Sydney ² Johns Hopkins University * Corresponding author

THU-PM-314



Outline

1. Motivation

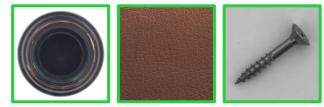
- 2. Methodology
- 3. Results
- 4. Conclusion

Motivation: Anomaly in Chest X-rays

Normal

Abnormal

Anomaly Detection in Crowded Scenes (photography images)

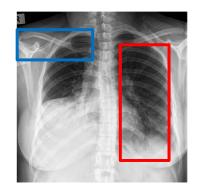


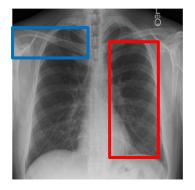
Anomaly Detection in Textures and Objects (photography images)

Anomaly Detection in Chest Anatomy (radiography images)

Motivation: Unique Characteristics for Chest X-rays

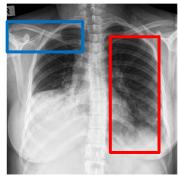
Radiography images

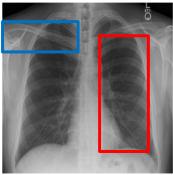




Motivation: Unique Characteristics for Chest X-rays

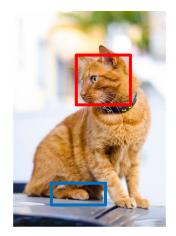
Radiography images

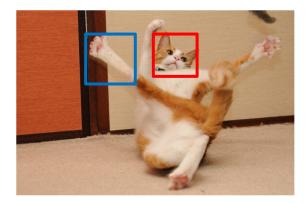




Consistent shapes/appearances and fixed poses.

Photography images





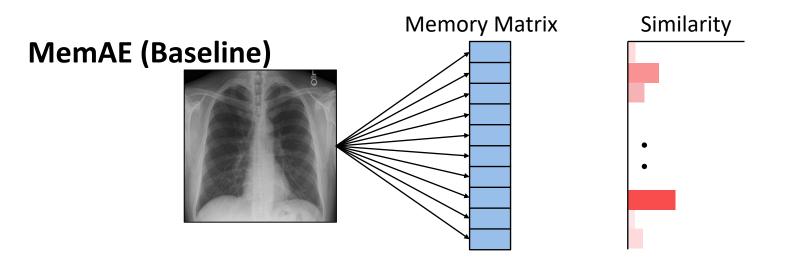
Outline

1. Motivation

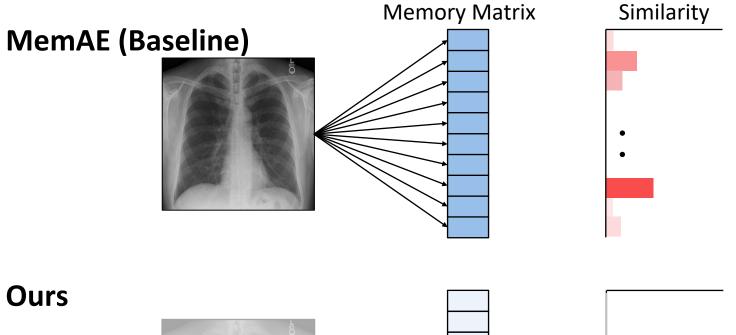
2. Methodology

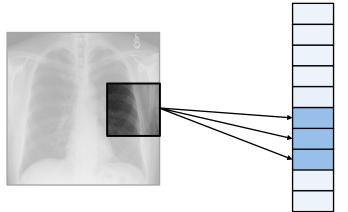
- 3. Results
- 4. Conclusion

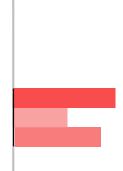
Methodology: Space-aware Memory



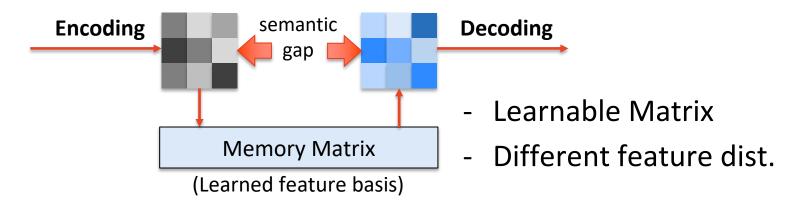
Methodology: Space-aware Memory



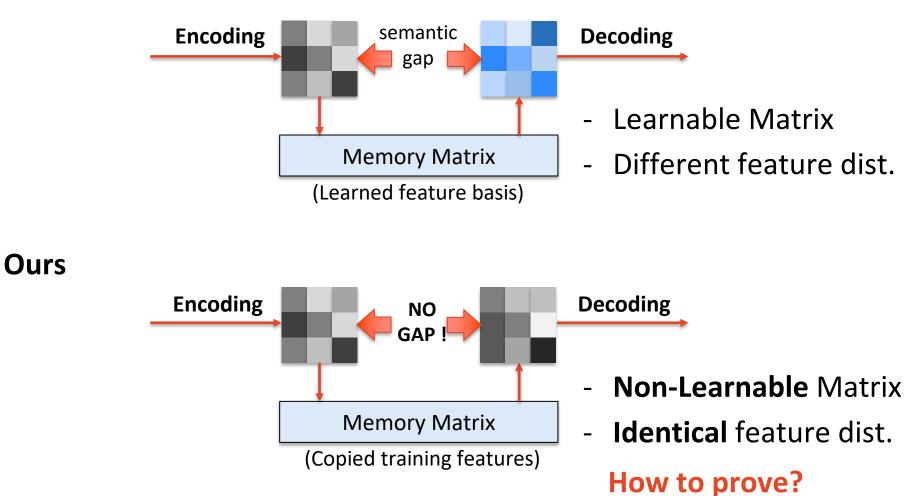




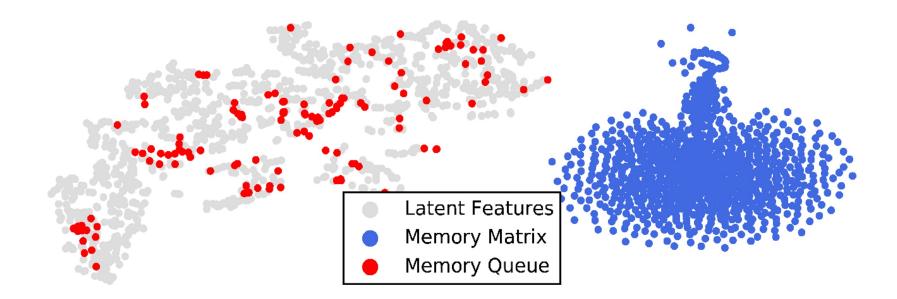
MemAE (Baseline)



MemAE (Baseline)



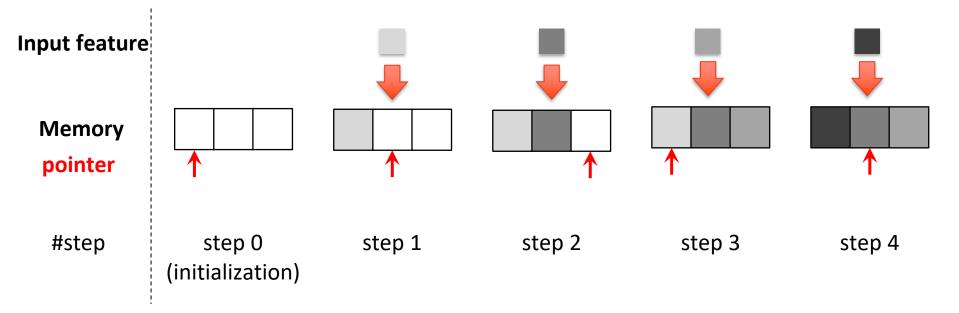
t-SNE feature visualizations



How to copy and paste?

- Memory matrix needs to be updated with most recent features.
- Refresh the entire matrix at every training step is inefficient.

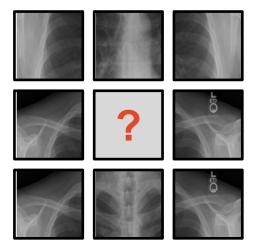
Memory Queue Processing



- First-in-first-out updating rule.
- Small learning rate helps.

Methodology: UAD as Feature-Space In-painting

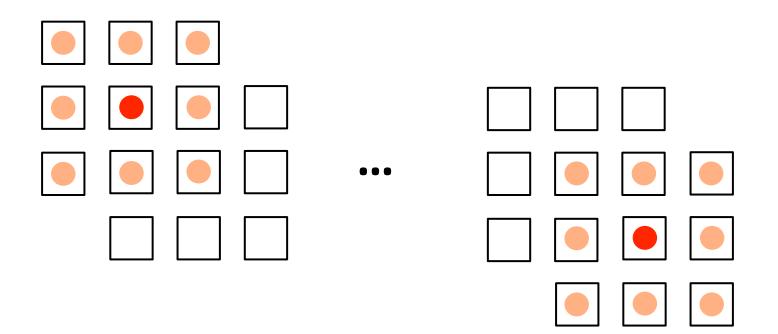
Pixel-Space In-painting



Feature-Space In-painting

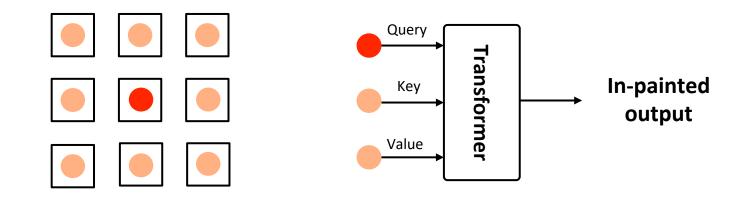
Given the contextual information What does a normal patch look like?

Methodology: UAD as Feature-Space In-painting

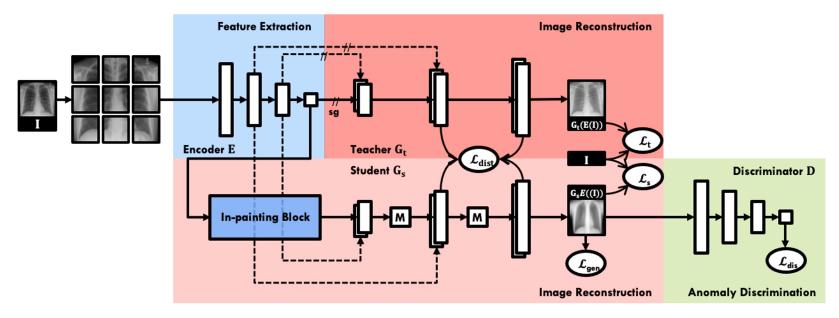


- Sliding window to traverse all patches
- Zero padding for out-of-range patches

Methodology: UAD as Feature-Space In-painting



Space-aware memory QUeue for In-painting and Detecting

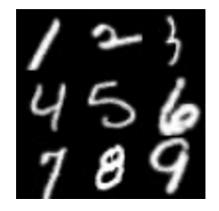


- GAN for adversarial learning
- Knowledge Distillation for regularization
- Generation quality as anomaly score
- Supervised by self-reconstruction losses.

Methodology: Creation of DigitAnatomy

Chest Anatomy

Digit Anatomy



Characteristics

- Consistent shape
- Fixed pose

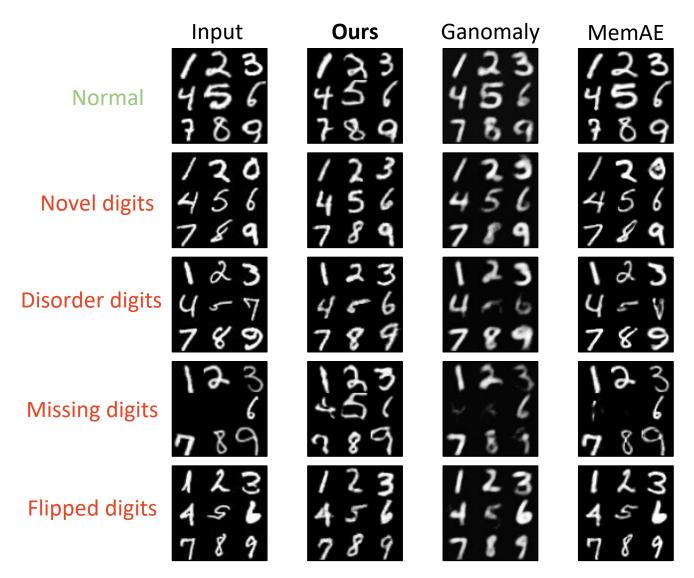
Benefits

- Intuitive demos 🗸

Outline

- 1. Motivation
- 2. Methodology
- 3. Results
- 4. Conclusion

Results: Interpretations on DigitAnatomy



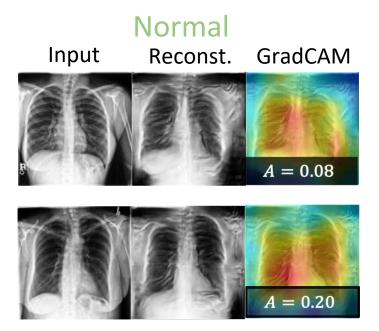
Results: Public Benchmarks

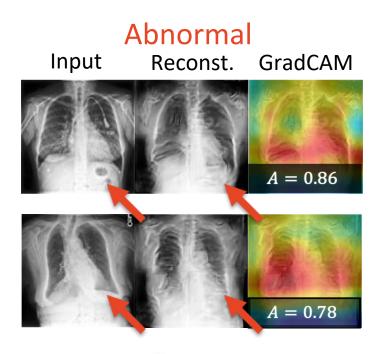
Quantitative Eval.

	ZhangLab	Ref & Year	AUC (%)	Acc (%)	F1 (%)
	Auto-Encoder	-	59.9	63.4	77.2
- AUC, Acc, F1 as	VAE [35]	Arxiv'13	61.8	64.0	77.4
	Ganomaly [1]	ACCV'18	78.0	70.0	79.0
motrics	f-AnoGAN [61]	MIA'19	75.5	74.0	81.0
metrics.	MemAE [17]	ICCV'19	77.8 ± 1.4	56.5 ± 1.1	$82.6 {\pm} 0.9$
	MNAD [53]	CVPR'20	77.3 ± 0.9	$73.6 {\pm} 0.7$	79.3 ± 1.1
	SALAD [82]	TMI'21	82.7 ± 0.8	$75.9 {\pm} 0.9$	82.1 ± 0.3
- Results of 3+	CutPaste [40]	CVPR'21	73.6 ± 3.9	64.0 ± 6.5	72.3 ± 8.9
	PANDA [56]	CVPR'21	65.7 ± 1.3	65.4 ± 1.9	66.3 ± 1.2
independent runs.	M-KD [59]	CVPR'21	74.1 ± 2.6	69.1 ± 0.2	62.3 ± 8.4
·	IF 2D [50]	MICCAI'21	81.0 ± 2.8	76.4 ± 0.2	82.2 ± 2.7
	PaDiM [12]	ICPR'21	71.4 ± 3.4	72.9 ± 2.4	80.7 ± 1.2
	IGD [10]	AAAI'22	73.4 ± 1.9	74.0 ± 2.2	80.9 ± 1.3
- > 5% AUC imp. on	SQUID	-	87.6±1.5	80.3±1.3	84.7±0.8
ZhangLab.	1943 - 2844				
8	CheXpert	Ref & Year	AUC (%)	Acc (%)	F1 (%)
- > 9% AUC imp. on	Ganomaly [1]	ACCV'18	68.9 ± 1.4	$65.7 {\pm} 0.2$	65.1 ± 1.9
,	f-AnoGAN [61]	MIA'19	65.8 ± 3.3	63.7 ± 1.8	59.4 ± 3.8
CheXpert.	MemAE [17]	ICCV'19	54.3 ± 4.0	55.6 ± 1.4	53.3 ± 7.0
	CutPaste [40]	CVPR'21	65.5 ± 2.2	62.7 ± 2.0	60.3 ± 4.6
	PANDA [56]	CVPR'21	$68.6 {\pm} 0.9$	66.4 ± 2.8	65.3 ± 1.5
	M-KD [59]	CVPR'21	69.8 ± 1.6	66.0 ± 2.5	63.6 ± 5.7
	SQUID	-	78.1±5.1	71.9±3.8	75.9±5.7

Results: Public Benchmarks

Qualitative Eval.

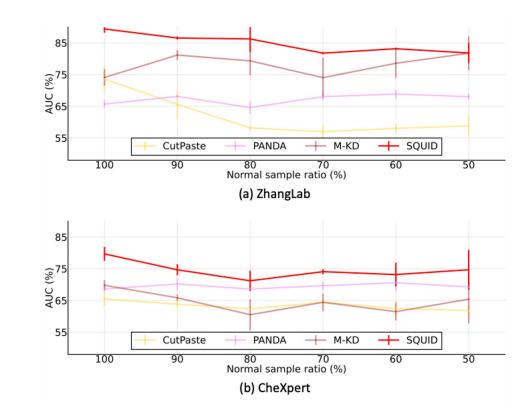




- Reconstructed normal images seem normal.
- Reconstructed abnormal images seem normal.
- Reconstructed normal/abnormal images have clear quality diff.
- High anomaly score (A) for abnormal images, low for normal images.

Results: True UAD Training

- Training dataset contains unknown data (normal/abnormal mixture).
- UAD algorithms should be robust to the mixed training.
- SQUID (red plots) yields the best robustness when the normal sample ratio >=60%.



Outline

- 1. Motivation
- 2. Methodology
- 3. Results

4. Conclusion

Conclusion

- Reformulated UAD as feature-space in-painting.
- Proposed Space-aware Memory Queue that caters to the unique characteristics of chest radiography.
- Designed multiple functional modules: Gumbel Shrinkage, Masked Shortcut,
 Anomaly discrimination that have never been explored in the UAD domain.
- Created the **DigitAnatomy** dataset to assist algorithm design in this domain.
- Achieved **SOTA performances** on three public benchmarks.
- Evaluated methods under the **real UAD training** settings for the first time.

Thank you!

