Towards Bridging the Performance Gaps of Joint Energy-based Models

Xiulong Yang, Qing Su, and Shihao Ji

Department of Computer Science Georgia State University Atlanta, USA

WED-PM-322

Summary of the paper

- Joint Energy-based Model (JEM) trains one single model for image classification and image generation.
- □ However, there remain two performance gaps
 - Classification accuracy gap
 - Image generation quality gap
- □ We introduce SADA-JEM to bridge both gaps
 - Extends Sharpness-Aware Minimization (SAM) to train JEM
 - Excludes data augmentation from the MLE pipeline of EBM
- □ Performance of SADA-JEM
 - Closed substantial performance gaps of JEM in image classification and image generation;
 - Outperforms JEM in calibration, OOD detection and adversarial robustness by a notable margin.

Outline

Background

- □ Motivations
- □ Methodology
- Experimental Results

Background

□ <u>EBM</u> stems from the observation that any pdf $p_{\theta}(x)$ can be expressed via a Boltzmann dist. as → energy function

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\exp\left(-\underline{E_{\boldsymbol{\theta}}(\boldsymbol{x})}\right)}{Z(\boldsymbol{\theta})} e^{-\frac{1}{2}}$$

 \Box MLE training of parameter θ

$$\frac{\partial \log p_{\theta}(x)}{\partial \theta} = \mathbb{E}_{\underline{p_{\theta}(x)}} \left[\frac{\partial E_{\theta}(x)}{\partial \theta} \right] - \mathbb{E}_{\underline{p_d(x)}} \left[\frac{\partial E_{\theta}(x)}{\partial \theta} \right]$$

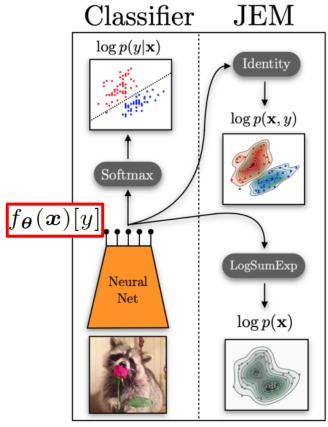
Samples from $p_{\theta}(x)$ Training set

□ SGLD sampling

$$egin{aligned} & x^0 \sim p_0(x), & \text{Image generator} \\ & x^{t+1} = x^t - rac{lpha}{2} rac{\partial E_{m{ heta}}(x^t)}{\partial x^t} + lpha \epsilon^t, & \epsilon^t \sim \mathcal{N}(\mathbf{0}, \mathbf{1}) \end{aligned}$$

Background

□ <u>JEM</u> [Grathwohl et al. 2019] reinterpreted the standard softmax classifier as an EBM.



Maximizes the log of joint density function $\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, y) = \log p_{\boldsymbol{\theta}}(y|\boldsymbol{x}) + \log p_{\boldsymbol{\theta}}(\boldsymbol{x})$ MLE training Cross-entropy of EBM for classification $E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\log \sum_{\boldsymbol{x}} e^{f_{\boldsymbol{\theta}}(\boldsymbol{x})[\boldsymbol{y}]} = -\text{LSE}(f_{\boldsymbol{\theta}}(\boldsymbol{x}))$ $p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\exp\left(-E_{\boldsymbol{\theta}}(\boldsymbol{x})\right)}{Z(\boldsymbol{\theta})}$

Motivations

□ Two performance gaps of JEM [Grathwohl et al. 2019, Yang et al. 2021]

- Classification accuracy gap
- Image generation quality gap

□ Hypothesis

Both performance gaps are the symptoms of lack of generalization of JEM trained models.

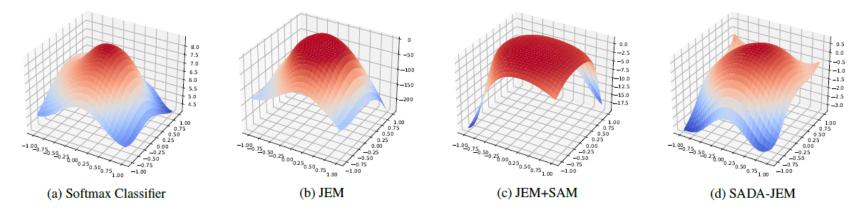


Figure 1. Visualizing the energy landscapes [34] of different models trained on CIFAR10. Note the dramatic scale differences of the y-axes, indicating SADA-JEM identifies the smoothest local optimum among all the methods considered.

Method: SADA-JEM

□ Sharpness-Aware Minimization (SAM) [Foret et al. 2021]

Searches for model parameters θ whose entire neighborhoods have uniformly low loss values

$$\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\epsilon}\|_2 \le \rho} L_{train}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) + \lambda \|\boldsymbol{\theta}\|_2^2$$

□ Extension to optimize JEM

$$\max_{\boldsymbol{\theta}} \min_{\|\boldsymbol{\epsilon}\|_2 \le \rho} \log p_{(\boldsymbol{\theta}+\boldsymbol{\epsilon})}(\boldsymbol{x},\boldsymbol{y}) + \lambda \|\boldsymbol{\theta}\|_2^2$$

□ Image Generation w/o Data Augmentation

The actual objective function of JEM with Data Augmentation $\log p_{\theta}(x, y) = \log p_{\theta}(y|T(x)) + \log p_{\theta}(T(x))$ $\log p_{\theta}(x, y) = \log p_{\theta}(y|T(x)) + \log p_{\theta}(x)$

This can be implemented efficiently by using two data loaders.

□ Hybrid Modeling

Table 1. Results on CIFAR10

Model	Acc $\% \uparrow$	IS ↑	$\mathrm{FID}\downarrow$	
SADA-JEM (K=5)	95.5	8.77	9.41	
SADA-JEM (K=10)	96.0	8.63	11.4	
SADA-JEM (K=20)	96.1	8.40	13.1	
Single Hy	brid Model			
IGEBM (K=60) [10]	49.1	8.30	37.9	
JEM (K=20)* [17]	92.9	8.76	38.4	
JEM++ (M=5)* [48]	91.1	7.81	37.9	
JEM++ (M=10) [48]	93.5	8.29	37.1	
JEM++ (M=20) [48]	94.1	8.11	38.0	
JEAT [51]	85.2	8.80	38.2	
Other	Other EBMs			
CF-EBM (K=50) [50]	-	-	16.7	
ImCD (K=40) [9]	-	7.85	25.1	
DiffuRecov (K=30) [13]	-	8.31	9.58	
VAEBM (K=6) [47]	-	8.43	12.2	
VERA [18]	93.2	8.11	30.5	
Other Models				
Softmax	96.2	-	-	
Softmax + SAM	97.2	-	-	
SNGAN [37]	-	8.59	21.7	
StyleGAN2-ADA [28]	-	9.74	2.92	

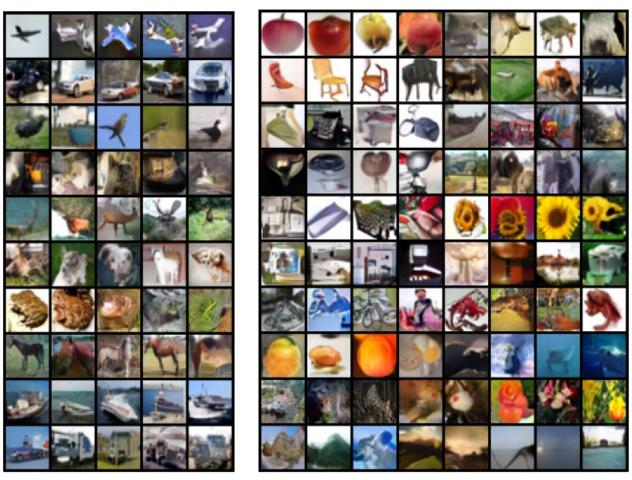
Table 2.	Results on CIFAR100	

Model	Acc % ↑	IS ↑	$\mathrm{FID}\downarrow$
SADA-JEM (K=5)	75.0	11.63	14.4
SADA-JEM (K=10)	<u>76.4</u>	10.95	15.1
SADA-JEM (K=20)	77.3	10.78	19.9
JEM (K=20)* [17]	72.2	10.22	38.1
JEM++ (M=5)* [48]	72.1	8.05	38.9
JEM++ (M=10)* [48]	74.2	9.97	34.5
JEM++ (M=20)* [48]	75.9	10.07	33.7
VERA (<i>α</i> =100)* [18]	72.2	8.25	29.5
VERA (α=1)* [18]	48.7	7.84	25.1
Softmax	<u>81.3</u>	-	-
Softmax + SAM	83.4	-	-
SNGAN [37]	-	9.30	15.6
BigGAN [4]	-	11.0	<u>11.7</u>

* No official IS and FID scores are reported. We run the official code with the default settings and report the results.

* The training is unstable and regularly diverged.

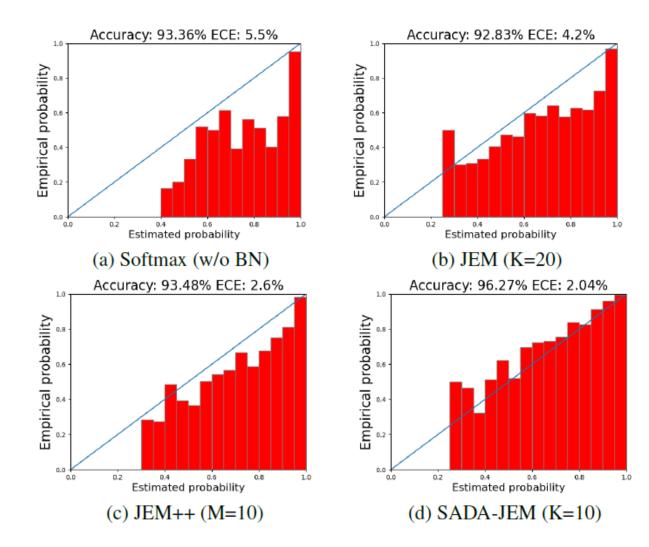
□ Generated samples from SADA-JEM



(a) CIFAR10

(b) CIFAR100

□ Calibration

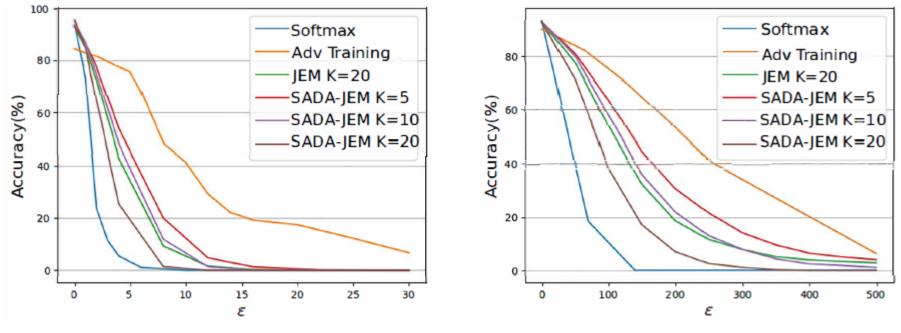


□ OOD Detection

$s_{oldsymbol{ heta}}(oldsymbol{x})$	Model	SVHN	CIFAR10 Interp	CIFAR100	CelebA
$\log p_{oldsymbol{ heta}}(oldsymbol{x})$	WideResNet [35]	.91	-	.87	.78
	IGEBM [10]	.63	.70	.50	.70
	JEM (K=20) [17]	.67	.65	.67	.75
	JEM++ (M=20) [48]	.85	.57	.68	.80
	VERA [18]	.83	.86	.73	.33
	ImCD [9]	.91	.65	.83	-
	SADA-JEM (K=5)	.91	.79	.90	.82
	SADA-JEM (K=10)	.95	.81	.90	.88
	SADA-JEM (K=20)	.98	.83	.92	.95
	WideResNet	.93	.77	.85	.62
	IGEBM [10]	.43	.69	.54	.69
$\max_{y} p_{\boldsymbol{\theta}}(y \boldsymbol{x})$	JEM (K=20) [17]	.89	.75	.87	.79
	JEM++ (M=20) [48]	.94	.77	.88	.90
	SADA-JEM (K=5)	.92	.77	.88	.81
	SADA-JEM (K=10)	.93	.78	.89	.78
	SADA-JEM (K=20)	.96	.80	.91	.84

Table 3. OOD detection results. Models are trained on CIFAR10. Values are AUROC.

Adversarial Robustness under PGD attack



(a) L_{∞} Robustness

(b) L_2 Robustness

□ Ablation Study

Ablation	Acc $\%$ \uparrow	$FID\downarrow$
JEM	89.5	36.2
JEM +SAM	90.1	35.0
JEM++	93.5	37.1
JEM++ +SAM	94.1	36.6
JEM++ w/o DA	93.6	12.9
JEM++ w/o DA + L_2 *	93.4	-
SADA-JEM	96.0	11.4

Conclusion

- □ We introduce SADA-JEM to bridge the classification accuracy gap and the generation quality gap of JEM.
- By incorporating the framework of SAM to JEM and excluding the undesirable data augmentation from the training pipeline of JEM, SADA-JEM promotes the energy landscape smoothness and hence the generalization of trained models.
- Our experiments verify the effectiveness of these techniques and demonstrate the state-of-the-art results in most of the tasks of image classification, generation, calibration, OOD detection and adversarial robustness.
- □ Future works
 - Computation bottleneck is not SAM (2x) but SGLD (*K*x)
 - EBM for large-scale benchmarks with high resolution images, such as ImageNet

Thank You!

Poster: WED-PM-322