CaT: Coaching a Teachable Student

Jimuyang Zhang, Zanming Huang, Eshed Ohn-Bar

Boston University

Paper Tag: TUE-PM-352

H2X Lab

How to *Effectively Teach* Sensorimotor Agents?

Step 1: Learn an *Effective Teacher* from a Privileged BEV with *Safety Hints*

Step 2: Learn a Student Model with an Image-to-BEV Feature Alignment Module

Step 2: Learn a Student Model with an Image-to-BEV Feature Alignment Module

Step 3: Student-paced Coaching Scaffolds the Difficult Sensorimotor Learning Task

Baseline

Learning from a Privileged Teacher

Does not address:

- Inherent differences between inputs
- Only output distillation what about internal features?
- Modeling capacity of the student?

Chen, et al. CoRL 2020, He, et al. NeurIPS 2013, Weihs, et al. NeurIPS, 2021, Chitta et al., PAMI 2022

Task	LBC	PV	AT
Empty	$ 70\pm0$	100 ± 0	100 ± 0
Regular	62 ± 2	93 ± 2	99 ± 1
Dense	39 ± 8	45 ± 10	59 ± 6

Method	$ $ DS \uparrow	$\mathbf{RC}\uparrow$	IS ↑
WOR [110]	20.53 ± 3.12	48.47 ± 3.86	$\textbf{0.56} \pm 0.03$
Latent TransFuser (Ours)	37.31 ± 5.35	$\textbf{95.18} \pm 0.45$	0.38 ± 0.05
LAV [46]	32.74 ± 1.45	70.36 ± 3.14	0.51 ± 0.02
Late Fusion (LF)	22.47 ± 3.71	83.30 ± 3.04	0.27 ± 0.04
Geometric Fusion (GF)	27.32 ± 0.80	91.13 ± 0.95	0.30 ± 0.01
TransFuser (Ours)	47.30 ± 5.72	93.38 ± 1.20	0.50 ± 0.06
Expert	76.91 ± 2.23	88.67 ± 0.56	0.86 ± 0.03

CaT: Coaching a Teachable Student

- We propose an effective *deep knowledge distillation* for sensorimotor students with: (1) A strong teacher model
 - (2) Alignment module for transforming image features to BEV space
 - (3) A *coaching optimization mechanism* for scaffolding the difficult learning task

Problem Setup

Objective: Given a dataset \mathcal{D} comprising sensory and privileged observations and a loss function \mathcal{L} , the student can be optimized from the teacher using

 $\underset{\theta}{\operatorname{argmin}} \mathbb{E}_{(\mathbf{x}^{s}, \mathbf{x}^{t}) \sim \mathcal{D}} \left[\mathcal{L}(\mathcal{F}^{s}(\mathbf{x}^{s}; \theta), \mathcal{F}^{t}(\mathbf{x}^{t}; \psi)) \right]$

Three RGB Camera Views:

Privileged Bird's-Eye-View (BEV):

Student Observations:

Teacher Observations:

Student Agent:

Teacher Agent:

Student Network Feature Maps:

Teacher Network Feature Maps:

Categorical Navigational Command:

 $\mathbf{I} = [\mathbf{I}_0, \mathbf{I}_1, \mathbf{I}_2] \in \mathbb{R}^{W \times H \times 3}$ $\mathbf{B} \in \{0,1\}^{W_B \times H_B \times C_B}$ $\mathbf{x}^{s} = (\mathbf{I}, \mathbf{g}, c) \in \mathcal{X}^{s}$ $\mathbf{x}^t = (\mathbf{B}, \mathbf{g}, c) \in \mathcal{X}^t$ $f^{s}_{\theta}: \mathcal{X}^{s} \to \mathcal{Y}, \theta \in \mathbb{R}^{d}$ $f_{\psi}^{t}: \mathcal{X}^{t} \to \mathcal{Y}$, $\psi \in \mathbb{R}^{d}$ $\mathcal{F}^{s}(\cdot;\theta)$ $\mathcal{F}^{t}(\cdot;\psi)$ $c \in \{1, \dots, 6\}$

Learning an Effective Teacher

Incorporating explicit safety-driven (*Agent Forecast, Entity Attention*) cues to BEV results in a strong teacher

Learning a Teachable Student

Loss Function: $\mathcal{L}_{CaT} = \mathcal{L}_{out} + \mathcal{L}_{feat} + \mathcal{L}_{seg} + \mathcal{L}_{cmd}$

Output Distillation: $\mathcal{L}_{out} = \sum_{c=1}^{C} \left\| f_{\theta}^{s}(\mathbf{x}^{s}, c) - f_{\psi}^{t}(\mathbf{x}^{t}, c) \right\|_{1}$ Feature Distillation: $\mathcal{L}_{feat} = \sum_{i=1}^{3} \left[\left\| \mathcal{F}_{i}^{s}(\mathbf{x}^{s}) - \mathcal{F}_{i}^{t}(\mathbf{x}^{t}) \right\|_{2} + \left\| T_{i}^{s} \left(\mathcal{F}_{i}^{s}(\mathbf{x}^{s}) \right) - T_{i}^{t} \left(\mathcal{F}_{i}^{t}(\mathbf{x}^{t}) \right) \right\|_{2} + \lambda_{CD} \left\| \mathcal{F}_{i}^{s}(\mathbf{x}^{s}) - \mathcal{F}_{i}^{t}(\mathbf{x}^{t}) \right\|_{CD} \right]$ Student-paced coaching adjusts the learning rate in a sample-selective manner, which aims to stabilize training by *reducing the difficulty* when the student is unable to perform the optimal action.

 $\mathcal{F}^t \leftarrow \lambda_i \mathcal{F}^s + (1 - \lambda_i) \mathcal{F}^t$, if $\mathcal{L}_{CaT} > \tau_i$

Results

Method	RGB	LiDAR	DS ↑	RC ↑	IS ↑
LAV [11]	1	1	48.41 ± 3.40	$80.71 {\pm} 0.84$	$0.60 {\pm} 0.04$
TransFuser [16]	1	1	$46.20 {\pm} 2.57$	83.61±1.16	$0.57{\pm}0.00$
WOR [10]	1	×	$17.36 {\pm} 2.95$	$43.46 {\pm} 2.99$	$0.54 {\pm} 0.06$
NEAT [15]	1	×	24.08 ± 3.30	$59.94 {\pm} 0.50$	$0.49 {\pm} 0.02$
TCP* [71]	1	×	$42.86 {\pm} 0.63$	$61.83 {\pm} 4.19$	$0.71 {\pm} 0.04$
CaT (w/o Alignment, Coaching, FD)	1	×	$39.48 {\pm} 0.67$	$60.96 {\pm} 1.65$	$0.68{\pm}0.01$
CaT (w/o Alignment, Coaching)	1	X	$40.64 {\pm} 0.98$	$62.45 {\pm} 0.46$	$0.67 {\pm} 0.01$
CaT (w/o Coaching, FD, SH)	1	×	$44.10 {\pm} 0.40$	$65.84 {\pm} 5.55$	$0.72 {\pm} 0.03$
CaT (w/o Coaching, SH)	1	×	$49.69 {\pm} 2.28$	$81.10 {\pm} 0.58$	$0.64 {\pm} 0.02$
CaT (w/o Coaching)	1	X	$55.55 {\pm} 1.41$	$81.97 {\pm} 2.34$	$0.68 {\pm} 0.01$
СаТ	1	×	58.36±2.24	78.79 ± 1.50	$0.77{\pm}0.02$
Privileged Agents:					
RL Expert (Roach) [79]	-	-	60.14 ± 2.40	$85.83 {\pm} 0.60$	$0.69 {\pm} 0.03$
Rule-based Expert	-	-	$71.96{\pm}2.13$	$77.46 {\pm} 3.11$	$0.91{\pm}0.00$
Basic BEV Agent [13]	-	-	$24.08 {\pm} 2.83$	$73.36{\pm}1.08$	$0.31 {\pm} 0.06$
+ History and Desired Path	-	-	$52.81 {\pm} 1.79$	$79.34 {\pm} 3.65$	$0.71 {\pm} 0.06$
+ Agent Forecast	-	-	$65.73 {\pm} 0.93$	$83.50 {\pm} 1.18$	$0.79 {\pm} 0.02$
+ Entity Attention	-	1-1	73.30±1.07	87.44±0.28	$0.83 {\pm} 0.02$

Results

Method	$\mathbf{DS}\uparrow$	$\mathbf{RC}\uparrow$	$\mathbf{IS}\uparrow$	
No Distillation	44.10	65.84	0.72	
One Layer [71, 79]	45.23	69.33	0.68	
Three Layers \mathcal{L}_2	49.31	66.92	0.78	
Three Layers $\mathcal{L}_2 + \mathcal{L}_{CD}$	51.95	62.82	0.87	
Three Layers \mathcal{L}_{feat}	55.55	81.97	0.68	

Ablation Study on Feature Distillation Layers

Open-Loop Evaluation on nuScenes.

Method	ADE (m) \downarrow	FDE (m) \downarrow	Coll. (%) \downarrow
BEV Agent	0.33	0.52	0.49
CaT (w/o Coaching, FD, SH)	0.48	0.43	0.68
CaT	0.41	0.36	0.27

Qualitative Results

Scenario: Night-time driving with agent turning right at an intersection with a vehicle in the way.

Qualitative Results

Scenario: Night-time driving with a pedestrian abruptly emerging from the right.

Baseline

Summary

- Develop an *alignment module*, enabling extensive supervision from the privileged teacher over the intermediate feature learning
- Incorporate explicit safety-aware cues into the BEV space that facilitate an effective teacher agent
- Design student-paced coaching that scaffolds knowledge and leads to improved model optimization by considering the learning ability of the student

Thank You for Watching!

RH2X Lab

