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Quick Preview

🤩 CLIP has powerful zero-shot classification ability!

ü We propose an efficient one-stage straightforward paradigm based on CLIP; 

ü We transfer the CLIP’s image-level classification ability to dense prediction tasks while maintaining the
advanced zero-shot knowledge;

ü We figure out three designs to achieve competitive results on seen classes while extremely improving the
performance on novel classes;

How to directly extend CLIP from image to pixel-level in 
zero-shot setting?

Contribution

ü Our method demonstrates superior performance, outperforming the state-of-the-art methods by a large margin
under both “inductive” and “transductive” zero-shot settings on three public benchmark datasets.

ü Compared with the two-stage method, our method has achieved a speedup of about 5 times faster during
inference and shows competitive generalization ability.

🥳
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Introduction
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Ø Stage1: Generate class-agnostic proposals;

🎁 Advantage:
Inherent zero-shot ability of CLIP.

😳 Disadvantage:
Increase computational cost.

Ø Stage 2: Feed the cropped regions to CLIP
for classification.

CLIP is still utilized for image-level classification.

Two-stage Pipeline:

Review of  previous zero-shot semantic segmentation methods based on CLIP

🧐 How about directly extending CLIP for zero-shot dense prediction?



Motivation
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Can we directly extend CLIP for zero-shot semantic segmentation?

One-stage Pipeline:

Ø Obtain text and patch embeddings;

Ø Generate semantic predictions by matching them in the decoder. 



Motivation

Can we directly extend CLIP for zero-shot semantic segmentation?
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🧐 Observation & Challenges:

❗Using the original CLIP for semantic segmentation:

❗Finetuning CLIP image encoder on base dataset:

❓ How to extend CLIP into zero-shot segmentation?

Insufficient visual presentation due to CLIP is only pretrained on image-level;

Better performance on seen classes but leads to overbias problem in zero-shot;

We propose efficient designs to adapt CLIP’s ability from image to pixel-level!



Method
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Ø Design 1: Deep Prompt Tuning (DPT) instead of fine-tuning or fixing for the CLIP image encode.

Ø Design 2: Applying Non-mutually Exclusive Loss (NEL) instead of Mutually Exclusive Loss.

Ø Design 3: Introducing Relationship Descriptor (RD) to incorporate the image-level prior into text embedding before
matching text-patch embeddings from CLIP in decoder:



Method

Ø Design 2: Non-mutually Exclusive Loss (NEL)Ø Design 1:  Deep Prompt Tuning (DPT)

Fixing or Fine-tuning
V.S.

Deep Prompt Tuning

CrossEntropy(Softmax(.))
V.S.             

BinaryCrossEntropy(Sigmoid(.)) 



Method

Ø Design 3: Relationship Descriptor

✔: dot product and absolute difference
❌: sum and concatenate operation



Method

Methods Stages Need extra image encoder? CLIP as classifier? Can do inductive?
SimBase

two
✔ ✔ ✔

ZegFormer ✔ ✔ ✔

MaskCLIP+ ✔ ✖ ✖

ZegCLIP one ✖ ✖ ✔

Differences between our approach and related zero-shot methods based on CLIP.
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Experiments

Benchmarks:

Ø PASCALVOC 2012 contains 10,582 augmented images for training and 1,449 for validation. We also ignore the ``background''
category and use 15 classes as the seen part and 5 classes as the unseen part.

Ø COCO-Stuff 164K is a large-scale dataset that contains 171 categories with 118,287 images for training and 5,000 for testing.
The whole dataset is divided into 156 seen classes and 15 unseen classes.

Ø PASCALContext includes 60 classes with 4,996 for training and 5,104 for testing. The dataset is divided into 50 known classes
(including ``background'') and the rest 10 classes as used as unseen classes in the test set.

Evaluation Metrics:
Ø pAcc, mIoU on both seen and unseen classes
Ø hIoU among seen and unseen classes

Seen classes 𝐶! Unseen classes 𝐶" Inference: 
Per-pixel classicization on 𝐶! ∪ 𝐶"

Ø Transductive: name of unseen classes are available

Ø Inductive: name of unseen classes are unavailable

Training images and ground truth of seen classes C#

Training images, ground truth of seen classes C# and name of unseen classes 𝐶"

Training: 

𝐶! ∩ 𝐶" = ∅



Experiments

Comparison with the state-of-the-art methods on three public benchmark datasets:



Experiments
Qualitative results on COCO-Stuff 164K:



Ablation Study

Efficiency comparison: Generalization ability:

Effectiveness of our proposed designs:



Effect of number of deep prompt tokens: Effect of depth of deep prompt tokens:

Effect of single and multiple text templates:

Ablation Study

Effect of using advanced loss function:
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Visualization Results



Conclusion

ü Successfully extending CLIP into zero-shot semantic segmentation with one-stage straight-forward
paradigm.

ü Three simple-but-effective designs to achieve competitive results on seen classes while extremely
improving performance on novel classes.

ü Flexible text queries to handle both “inductive” and “transductive” settings.

ü 5 times faster inference compared with two-stage methods.

🕊 Thank You
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