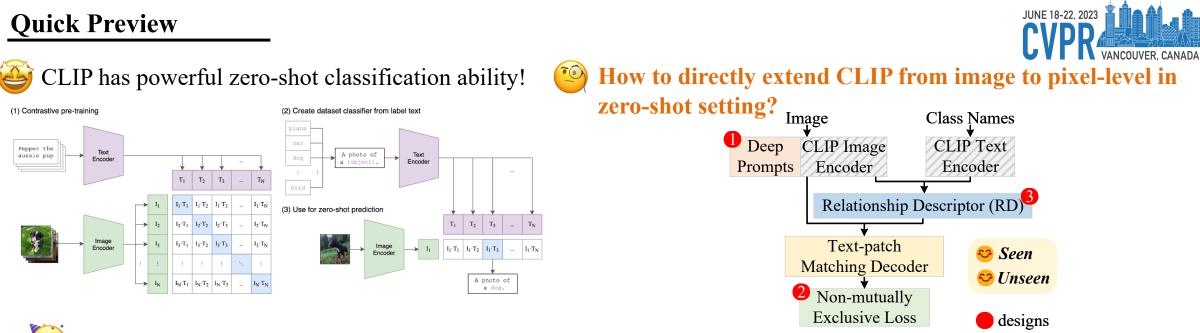


# **ZegCLIP:** Towards Adapting CLIP for Zero-shot Semantic Segmentation


Ziqin Zhou<sup>1</sup> Yinjie Lei<sup>2</sup> Bowen Zhang<sup>1</sup> Lingqiao Liu<sup>1</sup>\*(Corr) Yifan Liu<sup>1</sup> <sup>1</sup>The University of Adelaide, Australia <sup>2</sup>Sichuan University, China

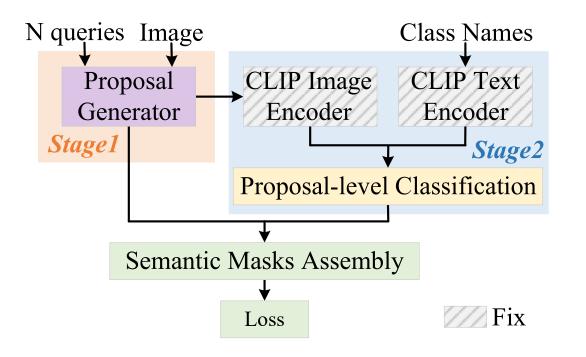
Paper: https://arxiv.org/abs/2212.03588

Github: https://github.com/ZiqinZhou66/ZegCLIP








# 👸 Contribution

- ✓ We propose an efficient **one-stage** straightforward paradigm based on CLIP;
- ✓ We transfer the CLIP's image-level classification ability to dense prediction tasks while maintaining the advanced zero-shot knowledge;
- ✓ We figure out three designs to achieve competitive results on seen classes while extremely improving the performance on novel classes;
- ✓ Our method demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both "inductive" and "transductive" zero-shot settings on three public benchmark datasets.
- ✓ Compared with the two-stage method, our method has achieved a speedup of about 5 times faster during inference and shows competitive generalization ability.

# Introduction



## Review of previous zero-shot semantic segmentation methods based on CLIP



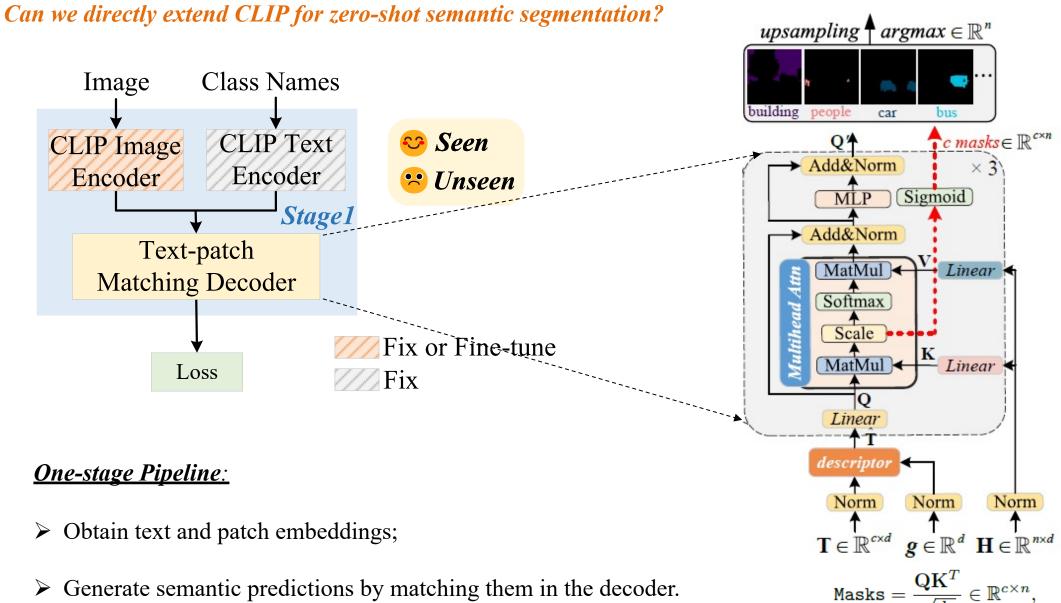
#### <u>Two-stage Pipeline:</u>

- Stage1: Generate class-agnostic proposals;
- Stage 2: Feed the cropped regions to CLIP for classification.

Advantage: Inherent zero-shot ability of CLIP.

Disadvantage:Increase computational cost.

## CLIP is still utilized for image-level classification.

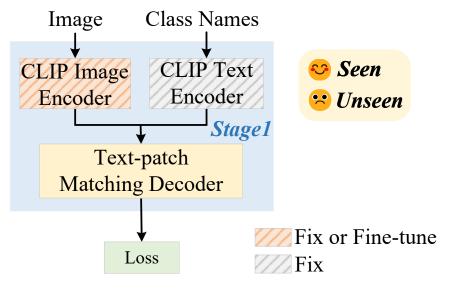


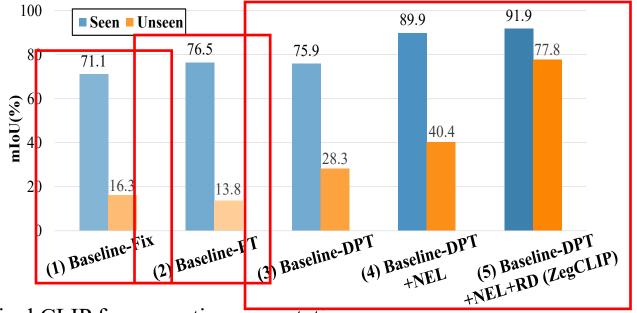

How about directly extending CLIP for zero-shot dense prediction?



# Motivation







(»))

# Motivation



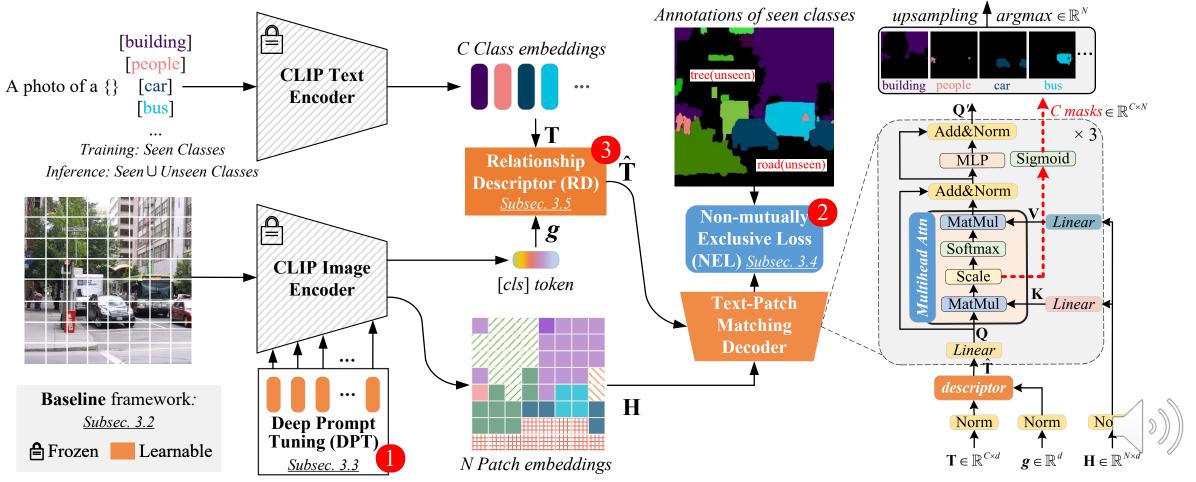
#### Can we directly extend CLIP for zero-shot semantic segmentation?





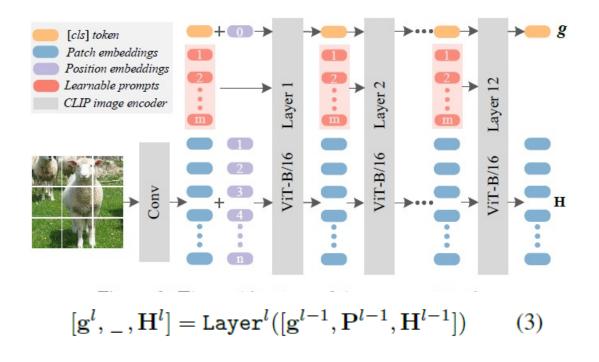
Using the original CLIP for semantic segmentation: Insufficient visual presentation due to CLIP is only pretrained on image-level;

**Observation & Challenges:** 


Finetuning CLIP image encoder on base dataset:

Better performance on seen classes but leads to overbias problem in zero-shot;

? How to extend CLIP into zero-shot segmentation? We propose efficient designs to adapt CLIP's ability from image to pixel-le el.




- > Design 1: Deep Prompt Tuning (DPT) instead of fine-tuning or fixing for the CLIP image encode.
- > Design 2: Applying Non-mutually Exclusive Loss (NEL) instead of Mutually Exclusive Loss.
- Design 3: Introducing Relationship Descriptor (RD) to incorporate the image-level prior into text embedding before matching text-patch embeddings from CLIP in decoder:



Design 1: Deep Prompt Tuning (DPT)

Fixing or Fine-tuning V.S. Deep Prompt Tuning



# JUNE 18-22, 2023 JUNE 18-22, 2023 VANCOUVER, CANADA

Design 2: Non-mutually Exclusive Loss (NEL)

CrossEntropy(Softmax(.)) V.S. BinaryCrossEntropy(Sigmoid(.))

$$\mathcal{L}_{\texttt{focal}} = -\frac{1}{\mathrm{hw}} \sum_{i=1}^{\mathrm{hw}} (1-y_i)^{\gamma} \times \hat{y} \mathrm{log}(y_i) + y_i^{\gamma} \times (1-\hat{y_i}) \mathrm{log}(1-y_i),$$
(4)

$$\mathcal{L}_{\text{dice}} = 1 - \frac{2\sum_{i=1}^{\text{hw}} y_i \hat{y}_i}{\sum_{i=1}^{\text{hw}} y_i^2 + \sum_{i=1}^{\text{hw}} \hat{y}_i^2},$$
(5)

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{\text{focal}} + \beta \cdot \mathcal{L}_{\text{dice}}, \tag{6}$$

where  $\gamma = 2$  balances hard and easy samples and  $\{\alpha, \beta\}$  are coefficients to combine focal loss and dice loss.





#### > Design 3: Relationship Descriptor

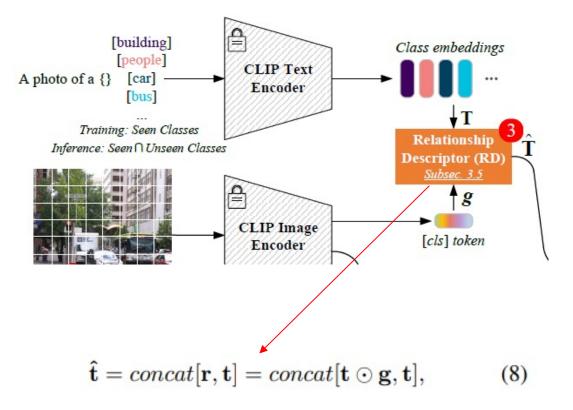
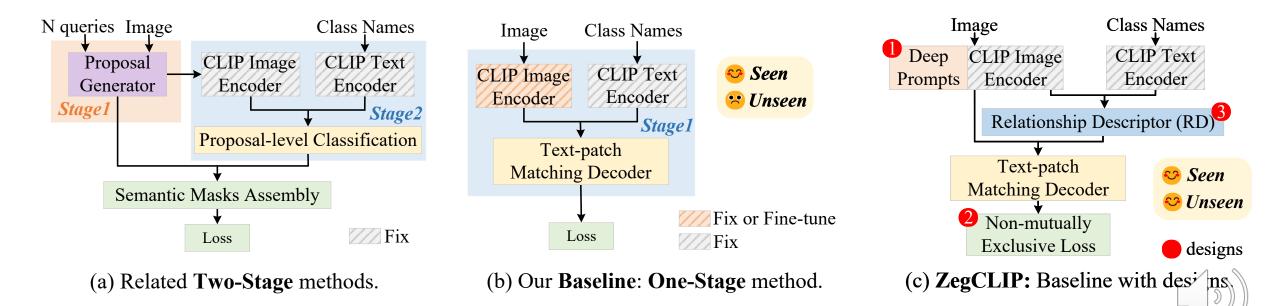



Table 4. Effect of different formats of text queries  $\mathbf{\hat{t}}$ .

| dim   | format of $\hat{\mathbf{t}}$ | pAcc | mIoU(S) | mIoU(U)     | hIoU |
|-------|------------------------------|------|---------|-------------|------|
|       | t                            | 86.8 | 89.5    | 33.7        | 49.0 |
|       | t⊙g                          | 93.1 | 90.2    | 68.4        | 77.8 |
| 512   | lt-gl                        | 92.4 | 90.6    | 64.2        | 75.1 |
|       | t-g                          | 88.7 | 87.9    | 46.5        | 60.8 |
|       | t+g                          | 82.2 | 89.9    | 13.9        | 24.1 |
|       | [t, g]                       | 88.9 | 88.8    | 39.3        | 54.5 |
|       | [t⊙g, t]                     | 94.6 | 91.9    | <b>77.8</b> | 84.3 |
| 512*2 | [lt-gl, t]                   | 90.9 | 91.5    | 54.2        | 68.1 |
| 512+2 | [t⊙g, t+g]                   | 88.3 | 90.0    | 38.0        | 53.4 |
|       | [t+g, t]                     | 82.8 | 89.4    | 20.7        | 33.6 |
|       | [t⊙g,  t-g ]                 | 94.1 | 91.2    | 73.9        | 81.6 |
| 512*3 | [t⊙g,  t-g , t]              | 93.4 | 91.6    | 67.3        | 77.6 |


dot product and absolute difference
sum and concatenate operation





Differences between our approach and related zero-shot methods based on CLIP.

| Methods   | Stages | Need extra image encoder? | CLIP as classifier? | Can do inductive? |
|-----------|--------|---------------------------|---------------------|-------------------|
| SimBase   |        | $\checkmark$              | $\checkmark$        | $\checkmark$      |
| ZegFormer | two    | $\checkmark$              | $\checkmark$        | $\checkmark$      |
| MaskCLIP+ |        | $\checkmark$              | ×                   | ×                 |
| ZegCLIP   | one    | ×                         | ×                   | $\checkmark$      |



# **Experiments**

JUNE 18-22, 2023

#### **Benchmarks:**

- PASCAL VOC 2012 contains 10,582 augmented images for training and 1,449 for validation. We also ignore the ``background" category and use 15 classes as the seen part and 5 classes as the unseen part.
- COCO-Stuff 164K is a large-scale dataset that contains 171 categories with 118,287 images for training and 5,000 for testing. The whole dataset is divided into 156 seen classes and 15 unseen classes.
- PASCAL Context includes 60 classes with 4,996 for training and 5,104 for testing. The dataset is divided into 50 known classes (including ``background") and the rest 10 classes as used as unseen classes in the test set.

Seen classes  $C^S$  Unseen classes  $C^U$   $C^S \cap C^U = \emptyset$ 

# **Training:**

Inductive: name of unseen classes are unavailable

Training images and ground truth of seen classes C<sup>S</sup>

 $\succ \underline{Transductive:} \text{ name of unseen classes are available}$ Training images, ground truth of seen classes C<sup>S</sup> and name of unseen classes C<sup>U</sup> **Inference:** Per-pixel classicization on  $C^S \cup C^U$ 

## **Evaluation Metrics:**

- pAcc, mIoU on both seen and unseen classes
- hIoU among seen and unseen classes

 $hIoU = \frac{2 * mIoU(S) * mIoU(U)}{mIoU(S) + mIoU(U)}.$ 



#### **Comparison with the state-of-the-art methods on three public benchmark datasets:**

Table 2. Comparison with the state-of-the-art methods on PASCAL VOC 2012, COCO-Stuff 164K, and PASCAL Context datasets. "ST" represents applying self-training via generating pseudo labels on all unlabeled pixels, while " $\dagger$ "+"ST" denotes that pseudo labels are merely annotated on unseen pixels excluding the ignore part.

| Methods                        |      | PASCAL  | VOC 2012 |      |      | COCO-S  | tuff 164K |      |      | PASCAI  | Context |      |
|--------------------------------|------|---------|----------|------|------|---------|-----------|------|------|---------|---------|------|
| Methods                        | pAcc | mIoU(S) | mIoU(U)  | hIoU | pAcc | mIoU(S) | mIoU(U)   | hIoU | pAcc | mIoU(S) | mIoU(U) | hIoU |
| Inductive                      |      |         |          |      |      |         |           |      | •    |         |         |      |
| SPNet [44]                     | -    | 78.0    | 15.6     | 26.1 | -    | 35.2    | 8.7       | 14.0 | -    | -       | -       | -    |
| ZS3 [3]                        | -    | 77.3    | 17.7     | 28.7 | -    | 34.7    | 9.5       | 15.0 | 52.8 | 20.8    | 12.7    | 15.8 |
| CaGNet [17]                    | 80.7 | 78.4    | 26.6     | 39.7 | 56.6 | 33.5    | 12.2      | 18.2 | -    | 24.1    | 18.5    | 21.2 |
| SIGN [10]                      | -    | 75.4    | 28.9     | 41.7 | -    | 32.3    | 15.5      | 20.9 | -    | -       | -       | -    |
| Joint [1]                      | -    | 77.7    | 32.5     | 45.9 | -    | -       | -         | -    | -    | 33.0    | 14.9    | 20.5 |
| ZegFormer [12]                 | -    | 86.4    | 63.6     | 73.3 | -    | 36.6    | 33.2      | 34.8 | -    | -       | -       | -    |
| zsseg [49]                     | 90.0 | 83.5    | 72.5     | 77.5 | 60.3 | 39.3    | 36.3      | 37.8 | -    | -       | -       | -    |
| ZegCLIP (Ours)                 | 94.6 | 91.9    | 77.8     | 84.3 | 62.0 | 40.2    | 41.4      | 40.8 | 76.2 | 46.0    | 54.6    | 49.9 |
| Transductive                   |      |         |          |      |      |         |           |      |      |         |         |      |
| SPNet+ST [44]                  | -    | 77.8    | 25.8     | 38.8 | -    | 34.6    | 26.9      | 30.3 | -    | -       | -       | -    |
| ZS5 [3]                        | -    | 78.0    | 21.2     | 33.3 | -    | 34.9    | 10.6      | 16.2 | 49.5 | 27.0    | 20.7    | 23.4 |
| CaGNet+ST [17]                 | 81.6 | 78.6    | 30.3     | 43.7 | 56.8 | 35.6    | 13.4      | 19.5 | -    | -       | -       | -    |
| STRICT [34]                    | -    | 82.7    | 35.6     | 49.8 | -    | 35.3    | 30.3      | 34.8 | -    | -       | -       | -    |
| zsseg+ST [49]                  | 88.7 | 79.2    | 78.1     | 79.3 | 63.8 | 39.6    | 43.6      | 41.5 | -    | -       | -       | -    |
| ZegCLIP+ST (Ours)              | 95.1 | 91.8    | 82.2     | 86.7 | 68.8 | 40.6    | 54.8      | 46.6 | 77.2 | 46.6    | 65.4    | 54.4 |
| MaskCLIP+ [56]                 | -    | 88.8    | 86.1     | 87.4 | -    | 38.1    | 54.7      | 45.0 | -    | 44.4    | 66.7    | 53.3 |
| <sup>†</sup> ZegCLIP+ST (Ours) | 96.2 | 92.3    | 89.9     | 91.1 | 69.2 | 40.7    | 59.9      | 48.5 | 77.3 | 46.8    | 68.5    | 55.6 |
| Fully Supervised               |      |         |          |      |      |         |           |      |      |         |         |      |
| ZegCLIP (Ours)                 | 96.3 | 92.4    | 90.9     | 91.6 | 69.9 | 40.7    | 63.2      | 49.6 | 77.5 | 46.5    | 78.7    | 56.9 |



#### **Qualitative results on COCO-Stuff 164K:**

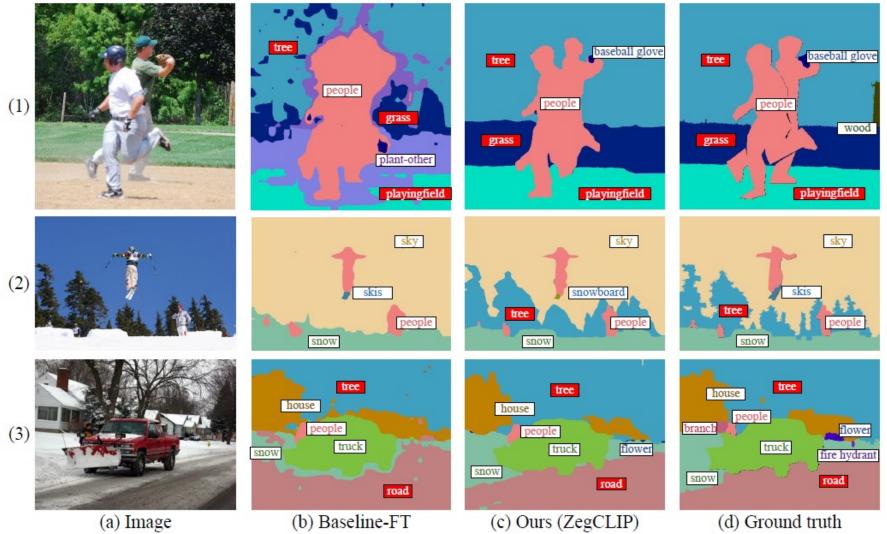
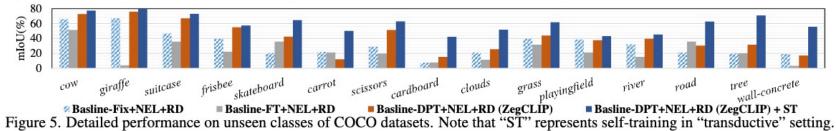



Figure 4. Qualitative results on COCO-Stuff 164K. (a) are the original testing images; (b) represent the performance of our proposed one-stage baseline (fine-tuning the image encoder); (c) are the visualization results of our proposed ZegCLIP; (d) are the ground truths of each image. Note that the white and red tags represent seen and unseen classes separately.






#### **Effectiveness of our proposed designs:**

| PASCAL VOC 2012 |                                                                                      |                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                        | COCO-Stuff 164K                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| pAcc            | mIoU(S)                                                                              | mIoU(U)                                                                                             | hIoU                                                                                                                                                   | pAcc                                                                                                                                                                                                   | mIoU(S)                                                                                                                                                                                                                                                | mIoU(U)                                                                                                                                                                                                                                                                                                   | hIol                                                                                                                                                                                                                                                                                                                                                         |  |
| 69.3            | 71.1                                                                                 | 16.3                                                                                                | 26.5                                                                                                                                                   | 33.3                                                                                                                                                                                                   | 17.1                                                                                                                                                                                                                                                   | 15.4                                                                                                                                                                                                                                                                                                      | 16.2                                                                                                                                                                                                                                                                                                                                                         |  |
| 85.5            | 85.2                                                                                 | 36.6                                                                                                | 51.2                                                                                                                                                   | 52.4                                                                                                                                                                                                   | 31.7                                                                                                                                                                                                                                                   | 20.8                                                                                                                                                                                                                                                                                                      | 25.1                                                                                                                                                                                                                                                                                                                                                         |  |
| 86.0            | 82.5                                                                                 | 46.6                                                                                                | 59.6                                                                                                                                                   | 41.0                                                                                                                                                                                                   | 23.3                                                                                                                                                                                                                                                   | 23.4                                                                                                                                                                                                                                                                                                      | 23.3                                                                                                                                                                                                                                                                                                                                                         |  |
| 89.6            | 83.3                                                                                 | 66.4                                                                                                | 73.9                                                                                                                                                   | 53.7                                                                                                                                                                                                   | 32.3                                                                                                                                                                                                                                                   | 32.5                                                                                                                                                                                                                                                                                                      | 32.4                                                                                                                                                                                                                                                                                                                                                         |  |
| 77.3            | 76.5                                                                                 | 13.8                                                                                                | 23.4                                                                                                                                                   | 48.4                                                                                                                                                                                                   | 32.4                                                                                                                                                                                                                                                   | 17.5                                                                                                                                                                                                                                                                                                      | 22.7                                                                                                                                                                                                                                                                                                                                                         |  |
| 83.8            | 84.1                                                                                 | 27.5                                                                                                | 41.4                                                                                                                                                   | 56.5                                                                                                                                                                                                   | 39.9                                                                                                                                                                                                                                                   | 25.4                                                                                                                                                                                                                                                                                                      | 31.0                                                                                                                                                                                                                                                                                                                                                         |  |
| 79.4            | 77.8                                                                                 | 20.7                                                                                                | 32.7                                                                                                                                                   | 54.0                                                                                                                                                                                                   | 39.6                                                                                                                                                                                                                                                   | 22.4                                                                                                                                                                                                                                                                                                      | 28.0                                                                                                                                                                                                                                                                                                                                                         |  |
| 89.6            | 90.2                                                                                 | 42.4                                                                                                | 57.7                                                                                                                                                   | 60.2                                                                                                                                                                                                   | 42.7                                                                                                                                                                                                                                                   | 22.3                                                                                                                                                                                                                                                                                                      | 29.                                                                                                                                                                                                                                                                                                                                                          |  |
| 76.2            | 75.9                                                                                 | 28.3                                                                                                | 41.2                                                                                                                                                   | 39.0                                                                                                                                                                                                   | 22.5                                                                                                                                                                                                                                                   | 17.5                                                                                                                                                                                                                                                                                                      | 19.'                                                                                                                                                                                                                                                                                                                                                         |  |
| 89.2            | 89.9                                                                                 | 40.4                                                                                                | 55.7                                                                                                                                                   | 58.5                                                                                                                                                                                                   | 38.0                                                                                                                                                                                                                                                   | 27.4                                                                                                                                                                                                                                                                                                      | 31.8                                                                                                                                                                                                                                                                                                                                                         |  |
| 85.5            | 81.0                                                                                 | 55.2                                                                                                | 65.7                                                                                                                                                   | 46.4                                                                                                                                                                                                   | 28.4                                                                                                                                                                                                                                                   | 27.8                                                                                                                                                                                                                                                                                                      | 28.                                                                                                                                                                                                                                                                                                                                                          |  |
| 94.6            | 91.9                                                                                 | 77.8                                                                                                | 84.3                                                                                                                                                   | 62.0                                                                                                                                                                                                   | 40.2                                                                                                                                                                                                                                                   | 41.4                                                                                                                                                                                                                                                                                                      | 40.8                                                                                                                                                                                                                                                                                                                                                         |  |
|                 | 69.3<br>85.5<br>86.0<br>89.6<br>77.3<br>83.8<br>79.4<br>89.6<br>76.2<br>89.2<br>85.5 | pAccmIoU(S)69.371.185.585.286.082.589.683.377.376.583.884.179.477.889.690.276.275.989.289.985.581.0 | pAccmIoU(S)mIoU(U)69.371.116.385.585.236.686.082.546.689.683.366.477.376.513.883.884.127.579.477.820.789.690.242.476.275.928.389.289.940.485.581.055.2 | pAccmIoU(S)mIoU(U)hIoU69.371.116.326.585.585.236.651.286.082.546.659.689.683.366.473.977.376.513.823.483.884.127.541.479.477.820.732.789.690.242.457.776.275.928.341.289.289.940.455.785.581.055.265.7 | pAccmIoU(S)mIoU(U)hIoUpAcc69.371.116.326.533.385.585.236.651.252.486.082.546.659.641.089.683.366.473.953.777.376.513.823.448.483.884.127.541.456.579.477.820.732.754.089.690.242.457.760.276.275.928.341.239.089.289.940.455.758.585.581.055.265.746.4 | pAccmIoU(S)mIoU(U)hIoUpAccmIoU(S)69.371.116.326.533.317.185.585.236.651.252.431.786.082.546.659.641.023.389.683.366.473.953.732.377.376.513.823.448.432.483.884.127.541.456.539.979.477.820.732.754.039.689.690.242.457.760.242.776.275.928.341.239.022.589.289.940.455.758.538.085.581.055.265.746.428.4 | pAccmIoU(S)mIoU(U)hIoUpAccmIoU(S)mIoU(U)69.371.116.326.533.317.115.485.585.236.651.252.431.720.886.082.546.659.641.023.323.489.683.366.473.953.732.332.577.376.513.823.448.432.417.583.884.127.541.456.539.925.479.477.820.732.754.039.622.489.690.242.457.760.242.722.376.275.928.341.239.022.517.589.289.940.455.758.538.027.485.581.055.265.746.428.427.8 |  |

Table 5. Quantitative results on VOC and COCO dataset to demonstrate the effectiveness of our proposed three designs.



#### **Efficiency comparison:**

Table 3. Efficiency comparison with different metrics. All models are evaluated on a single 1080Ti GPU. #Params represents the number of learnable parameters in the whole framework.

| Datasets | Methods        | $\#Params(M) \downarrow$ | $Flops(G) \downarrow$ | FPS ↑ |
|----------|----------------|--------------------------|-----------------------|-------|
| VOC      | ZegFormer [12] | 60.3                     | 1829.3                | 1.7   |
| VUC      | ZegCLIP        | 13.8                     | 110.4                 | 9.0   |
| COCO     | ZegFormer [12] | 60.3                     | 1875.1                | 1.5   |
| COCO     | ZegCLIP        | 14.6                     | 123.9                 | 6.7   |

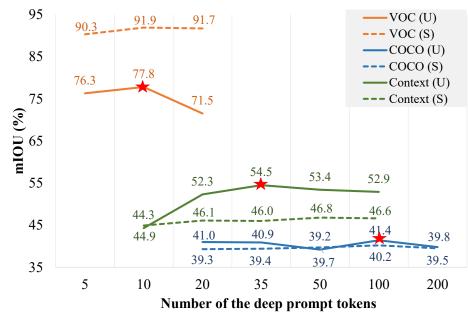
# **Generalization ability:**

Table 7. Generalization ability to other datasets.

| source | target  | method              | pAcc | mIoU | mAcc |
|--------|---------|---------------------|------|------|------|
|        |         | Zegformer [12]      | 56.8 | 36.1 | 64.0 |
|        | Context | ZegCLIP             | 60.9 | 41.2 | 68.4 |
| сосо   |         | <b>†</b> ZegCLIP+ST | 68.4 | 45.8 | 70.9 |
| 0000   |         | Zegformer [12]      | 92.8 | 85.6 | 92.7 |
|        | VOC     | ZegCLIP             | 96.9 | 93.6 | 96.4 |
|        |         | <b>†</b> ZegCLIP+ST | 97.2 | 94.1 | 96.7 |



# **Ablation Study**




#### **Effect of using advanced loss function:**

Table 6. Comparison of introducing advanced loss function. Note that "plain" represents merely Binary Cross Entropy (BCE), while "plus" means adding focal loss on BCE and dice loss

| dataset | loss  | pAcc | mIoU(S) | mIoU(U) | hIoU |
|---------|-------|------|---------|---------|------|
| VOC     | plain | 93.4 | 89.7    | 73.6    | 80.9 |
| VOC     | plus  | 94.6 | 91.9    | 77.8    | 84.3 |
| сосо    | plain | 59.8 | 38.8    | 39.0    | 38.9 |
| COCO    | plus  | 62.0 | 40.2    | 41.4    | 40.8 |
| Contoxt | plain | 75.3 | 43.5    | 50.0    | 46.5 |
| Context | plus  | 76.2 | 46.0    | 54.6    | 49.9 |

#### **Effect of number of deep prompt tokens:**



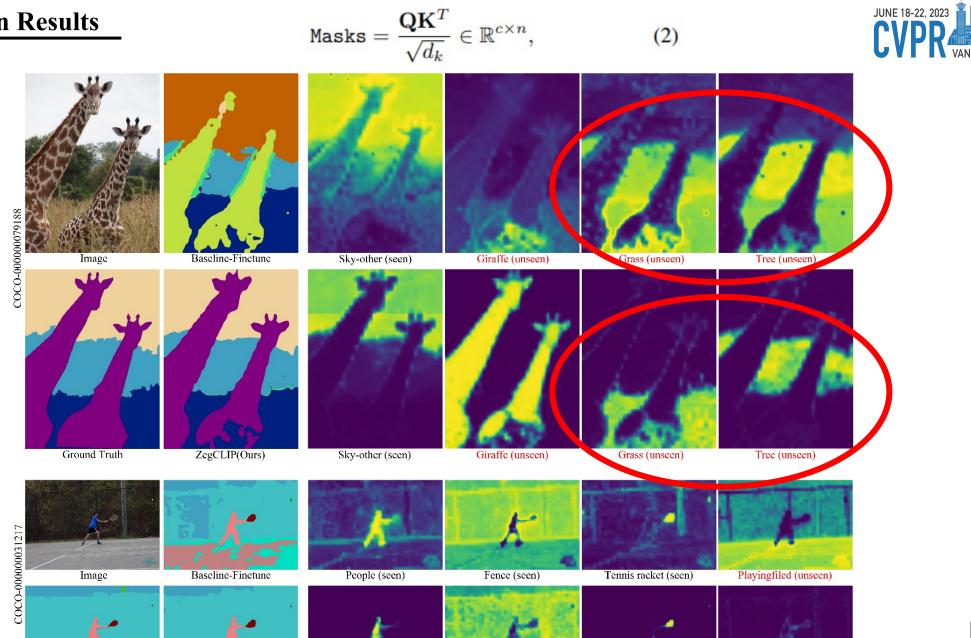
# **Effect of single and multiple text templates:**

Table 9. Comparison of using single and multiple templates on COCO-Stuff 164K and PASCAL Context datasets.

| dataset | template | pAcc | mIoU(S) | mIoU(U) | hIoU        |
|---------|----------|------|---------|---------|-------------|
| СОСО    | single   | 61.4 | 39.5    | 40.6    | 40.0        |
|         | multiple | 62.0 | 40.2    | 41.4    | <b>40.8</b> |
| Contaxt | single   | 75.8 | 45.1    | 52.1    | 48.3        |
| Context | multiple | 76.2 | 46.0    | 54.6    | <b>49.9</b> |

#### Effect of depth of deep prompt tokens:

Table 8. Effect of the depth of deep prompt tuning on VOC.


| layer               | pAcc | mIoU(S) | mIoU(U) | hIoU |
|---------------------|------|---------|---------|------|
| 1                   | 91.4 | 87.5    | 67.8    | 76.4 |
| $1 \rightarrow 3$   | 91.7 | 86.7    | 70.2    | 77.6 |
| $1 \rightarrow 6$   | 92.7 | 87.8    | 75.3    | 81.1 |
| $1 \rightarrow 9$   | 93.3 | 88.9    | 72.4    | 79.8 |
| $1 \rightarrow 12$  | 94.6 | 91.9    | 77.8    | 84.3 |
| $10 \rightarrow 12$ | 92.5 | 88.3    | 70.9    | 78.6 |
| $7 \rightarrow 12$  | 92.5 | 89.0    | 68.0    | 77.1 |
| 4→12                | 93.6 | 91.5    | 66.9    | 77.3 |



#### **Visualization Results**

Ground Truth

ZegCLIP(Ours)



 $\square )))$ 

ANCOUVER, CANADA

People (seen)

Fence (seen)

Tennis racket (seen)

Playingfiled (unseen)



- ✓ Successfully extending CLIP into zero-shot semantic segmentation with **one-stage** straight-forward paradigm.
- ✓ Three **simple-but-effective designs** to achieve competitive results on seen classes while extremely improving performance on novel classes.
- ✓ Flexible text queries to handle both "inductive" and "transductive" settings.
- ✓ 5 times faster inference compared with two-stage methods.







