

Rocheste Institute o Technolog

Catch Missing Details: Image Reconstruction with Frequency Augmented Variational Autoencoder

Xinmiao Lin¹, Yikang Li², Jenhao Hsiao², Chiuman Ho², Yu Kong³ ¹Rochester Institute of Technology, ²OPPO US Research, ³Michigan State University

TUE-AM-165

Summary

Challenges:

- Reconstruction **deteriorates** with higher compression.
- Features of the middle and higher frequency spectrum are **least recoverable**.

Contributions:

- New model **F**requency **A**ugmented **VAE** (**FA-VAE**) for more accurate details reconstruction.
- New losses **Spectrum Loss (SL)** and **Dynamic Spectrum Loss (DSL)** for learning features of different low/high frequency mixtures.
- New Cross-attention Autoregressive Transformer (CAT) for text-to-image generation with **enhanced attention** mechanism.

Results:

- **FA-VAE improves reconstruction** for various compression rates on several benchmarks.
 - CelebA-HQ, FFHQ, ImageNet
- CAT yields better generation quality for T2I synthesis.

baseline

original

ours

Motivation

- With higher compression rate, **harder to reconstruct** accurately images.
- Features towards middle and higher frequency spectrum are **least recoverable**.
- Existing reconstruction models tend to **ignore alignment** on the frequency spectrum.

FA-VAE

• Frequency Augmented VAE (FA-VAE) learns to complement the reconstructed images with missing features of important frequencies.

Focal Frequency Loss (FFL)

Focal Frequency Loss (FFL) penalizes the hard frequencies.

$$ext{FFL}(\mathcal{A}_i,\mathcal{C}_i) = rac{1}{MN|\mathcal{C}_i|} \sum_{c=0}^{|\mathcal{C}_i|-1} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} w(u,v) J(u,v)$$

encoder activations

decoder activations

weights frequency distance

- weights: $w(u,v) = |F_{\mathcal{A}_i}(u,v) F_{\mathcal{C}_i}(u,v)|$ 0
- frequency distance: $J(u,v) = |F_{\mathcal{A}_i}(u,v) F_{\mathcal{C}_i}(u,v)|^2$ Ο
- Discrete Fourier Transform (DFT): $F(u,v) = \sum_{x=0}^{M-1} \sum_{u=0}^{N-1} f(x,y) \cdot e^{-i2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$ Ο

Noise due to overemphasis on the higher frequency spectrum

Spectrum Loss (SL)

- Penalizes more mismatch in the lower frequency spectrum
 - Because they define the image content
- Diminish the weights towards higher frequency spectrum
 - Details they contain the details
- Apply Gaussian kernels on the activations

$$(\hat{\mathcal{A}}_i, \hat{\mathcal{C}}_i) = (K_i(\mu, \sigma_i) \star \mathcal{A}_i, K_i(\mu, \sigma_i) \star \mathcal{C}_i)$$

Gaussian Kernels

• Spectrum Loss (SL) is defined as:

$$\mathrm{SL}(\mathcal{A}_i,\mathcal{C}_i)=\mathrm{FFL}(\hat{\mathcal{A}}_i,\hat{\mathcal{C}}_i)$$

Better reconstruction on the lower spectrum, checkerboard artifacts due to fixed σ_i

Dynamic Spectrum Loss (DSL)

- Optimize the variances σ_i instead static.
 - Dynamically adjust to different amounts of frequencies needed.
- σ_i are model parameters and optimized as:

$$\sigma^*_i, \mathcal{E}^*, \mathcal{G}^*, \mathcal{C}^* = rgmin_{\sigma_i, \mathcal{E}, \mathcal{G}, \mathcal{C}} (\mathcal{L}_{rec} + \mathcal{L}_Q)$$

- $\circ ~ \mathcal{L}_{rec}$ is the reconstruction loss
- $\circ \mathcal{L}_Q$ is the quantization loss

Good balance between low and high frequencies, No checkerboard artifacts

CAT for T2I

- Cross-attention Autoregressive Transformer (CAT) for text-to-image (T2I) generation task.
 - Uses all token embeddings of a text description for more fine-grained guidance.
 - Embeds cross-attention mechanism to guide generation at each step.

Experiments - Reconstruction

original	VQ-GAN <i>f</i> : 16 rFID: 5.15	OURS <i>f</i> : 16 rFID: 4.60	DALL-E <i>f</i> : 8 rFID: 32.01	VQ-GAN <i>f</i> :4 rFID: 1.06	OURS <i>f</i> :4 rFID: 0.40	Model	Dataset	Codebook Size	(h imes w)	rFID \downarrow
A						RQ-VAE [25] FA-VAE (Ours)	FFHQ FFHQ	2048 2048	(8 imes 8) (16 imes 16)	5.33 4.98
Image	MAR	100	The a	TO A	N°DA	VQ-VAE-2 [39]	ImageNet	512	(64×64) & (32×32)	~ 10 (train)
				A A Lakes	CAN LEADER	VQ-GAN [40]	ImageNet	8192	(64×64)	1.06
						FA-VAE (Ours)	ImageNet	8192	(64×64)	0.40
				0		DALL-E [38]	ImageNet	8192	(32×32)	32.01
=		and the second		A	A REAL	VQ-GAN [11]	ImageNet	16384	(16×16)	5.15
B	A CONTRACTOR OF THE OWNER	and a second		State State	A CONTRACTOR	VQ-GAN [11]	ImageNet	1024	(16×16)	7.94
e de la companya de la						VQ-GAN [25]	ImageNet	16384	(8×8)	17.95
		A State of the State of the	interior and a second second			RQ-VAE [†] [46]	ImageNet	16384	(8×8)	10.77
	and Sugar	and the second		10 10	art Has	RQ-VAE* [25]	ImageNet	16384	(8×8)	4.73
						FA-VAE (Ours)	ImageNet	16384	(16×16)	4.60

- FA-VAE gives better reconstruction on different compression rates.
- FA-VAE improves the reconstruction on the frequency spectrum.
- More results in the paper.

9

Experiments - Generation

"The woman has big lips and is wearing heavy makeup."

- CAT generates better images for text inputs on CelebA-HQ-MM dataset.
- Images look more realistic.
- More results in the paper.

Thanks

Paper: https://arxiv.org/abs/2305.02541

Code: https://xinmiaolin.github.io/

References

- VQ-GAN: Esser, Patrick et al. "Taming Transformers for High-Resolution Image Synthesis." 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020): 12868-12878.
- RQ-VAE: Lee, Doyup & Kim, Chiheon & Kim, Saehoon & Cho, Minsu & Han, Wook-Shin. (2022). Autoregressive Image Generation using Residual Quantization.
- VQ-VAE-2: Razavi, Ali et al. "Generating Diverse High-Fidelity Images with VQ-VAE-2." *Neural Information Processing Systems* (2019).
- DALL-E: Ramesh, Aditya et al. "Zero-Shot Text-to-Image Generation." International Conference on Machine Learning (2021).
- AttnGAN: Xu, Tao & Zhang, Pengchuan & Huang, Qiuyuan & Zhang, Han & Gan, Zhe & Huang, Xiaolei & He, Xiaodong. (2018).
 AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks. 1316-1324.
 10.1109/CVPR.2018.00143.
- ControlGAN: Li, Bowen et al. "Controllable Text-to-Image Generation." *ArXiv* abs/1909.07083 (2019): n. pag.
- DM-GAN: Zhu, Minfeng et al. "DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-To-Image Synthesis." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019): 5795-5803.
- DF-GAN: Tao, Ming et al. "DF-GAN: Deep Fusion Generative Adversarial Networks for Text-to-Image Synthesis." *ArXiv* abs/2008.05865 (2020): n. pag.
- TediGAN: Xia, Weihao et al. "TediGAN: Text-Guided Diverse Face Image Generation and Manipulation." 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 2256-2265.
- LAFITE: Zhou, Yufan et al. "Towards Language-Free Training for Text-to-Image Generation." 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 17886-17896.