

Recognizability Embedding Enhancement for Very Low-Resolution Face Recognition (VLRFR) and Quality Estimation

Jacky Chen Long Chai, Tiong-Sik Ng, Cheng-Yaw Low, Jaewoo Park, Andrew Beng Jin Teoh

Introduction

• Region of interest become smaller due to extreme stand-off distance or broad viewing angle.

Range between 16 × 16 to 32 × 32 pixels (Zou and Yuen 2011) [60].

- Training of a VLRFR model often suffers from limited meaningful identity-specific patterns.
- Further escalated due to ambiguous inter-class variations with perceptually similar identities.
- Same low-resolution and cross resolution matching.

Motivation

- A deep face model pretrained on high-resolution faces introduces a cluster of unrecognizable indentities (UIs) (grey) [9] in the embedding space.
- Hard-to-recognize faces (red) from VLR dataset lie closely to these UIs, indicating their low recognizability.

Goals

- Translate face recognizability into a measurable indicator that closely matches human cognition.
- Improve the recognizability of hard-to-recognize instances by pushing them away from the UIs center.

- Accepts unrecognizable identities (UIs) and realistic low-resolution face datasets as inputs.
- Comprises 3 main modules.

Perceptibility Regression Module (PRM)

• Learns the recognizability index (RI) and predicts the quality for any face samples including the unseen ones.

Recognizability Index (RI), ξ

Index Diversion Loss

- To enhance the hard-to-recognize instances' recognizability based on learned RI with respect to the UIs.
- The diversion of the learned RI of each face in Z-score is defined as:

$$div = rac{\widehat{\xi_i} - \mu_{\scriptscriptstyle UI}}{\sigma_{\scriptscriptstyle UI}}$$

where μ_{UI} and σ_{UI} denotes the mean and standard deviation recognizability index of UIs.

• The index diversion loss is then defined as: $L_{ID} = \max(0, \tau - div)$

Perceptibility-aware Attention Module (PAM)

• Embedding projection away from UIs cluster center is beneficial for model to highlight meaningful features when face is obscure.

$$oldsymbol{v}_i'=oldsymbol{v}_i-\langleoldsymbol{v}_i,oldsymbol{\overline{v}}_{\scriptscriptstyle UI}
angleoldsymbol{\overline{v}}_{\scriptscriptstyle UI}$$

 $\overline{\boldsymbol{v}}_{UI}$ is L2-normalized average of UIs' embedding.

• Approximating v_i' through PAM module using MSE loss as follows:

- The projection of embedding away from UIs cluster can be deemed as RI-enhanced embedding.
- The projection guides the model to attend to parts of embedding that **represent the salient facial features for recognizability**.

Loss Computation

• For recognition module, the angular margin SoftMax loss (i.e. ArcFace) is chosen.

• The total loss computation is written as:

$$L_{total} = L_{cls} + \alpha L_{L1} + \beta L_{ID} + \gamma L_{MSE}$$

where α , β , γ are the respective weighting factors for each loss.

Very Low-Resolution Face Recognition Datasets:

TinyFace

ScFace

Performances in 3 VLR Datasets

Dataset Names

Ablation Analysis

Method	\mathcal{L}_{cls}	\mathcal{L}_{ID}	\mathcal{L}_{MSE}	\mathcal{L}_{L1}	Rank-1 IR (%)
Cross Entropy (2014)	\checkmark				68.884
NormFace (2017)	\checkmark				68.026
CosFace (2018)	\checkmark				70.306
MV-Softmax (2020)	\checkmark				70.547
CurricularFace (2020b)	\checkmark				70.655
MagFace (2021)	\checkmark				70.467
AdaFace (2022)	\checkmark				70.359
Baseline (ArcFace) (2019)	\checkmark				70.333 Direct elevation of
Ι	\checkmark	\checkmark			71.298 recognizability
II	\checkmark		\checkmark		71.540
III	\checkmark			\checkmark	71.674
Ours	\checkmark	\checkmark	\checkmark	\checkmark	71.915

Ablation Analysis

Method	\mathcal{L}_{cls}	\mathcal{L}_{ID}	\mathcal{L}_{MSE}	\mathcal{L}_{L1}	Rank-1 IR (%)	
Cross Entropy (2014)	\checkmark				68.884	
NormFace (2017)	\checkmark				68.026	
CosFace (2018)	\checkmark				70.306	
MV-Softmax (2020)	\checkmark				70.547	
CurricularFace (2020b)	\checkmark				70.655	
MagFace (2021)	\checkmark				70.467	
AdaFace (2022)	\checkmark				70.359	
Baseline (ArcFace) (2019)	\checkmark				70.333	Attention on embedding
Ι	\checkmark	\checkmark			71.298	projection away from UIs
II	\checkmark		\checkmark		71.540	cluster allows the model to
III	\checkmark			\checkmark	71.674	highlight salient regions within
Ours	\checkmark	\checkmark	\checkmark	\checkmark	71.915	a face.

Ablation Analysis

Method	\mathcal{L}_{cls}	\mathcal{L}_{ID}	\mathcal{L}_{MSE}	\mathcal{L}_{L1}	Rank-1 IR (%)	-
Cross Entropy (2014)	\checkmark				68.884	
NormFace (2017)	\checkmark				68.026	
CosFace (2018)	\checkmark				70.306	
MV-Softmax (2020)	\checkmark				70.547	
CurricularFace (2020b)	\checkmark				70.655	
MagFace (2021)	\checkmark				70.467	
AdaFace (2022)	\checkmark				70.359	
Baseline (ArcFace) (2019)	\checkmark				70.333	Simultaneously benefit from
Ι	\checkmark	\checkmark			71.298	recognizability-aware
II	\checkmark		\checkmark		71.540	embedding learning, which RI
III	\checkmark			\checkmark	71.674	can be viewed as model's
Ours	\checkmark	\checkmark	\checkmark	\checkmark	71.915	confidence corresponding to
						classifiability.

Recognizability Index

• Recognizability distribution of each face instance from TinyFace testing set is shown as follows:

Error vs. Reject Curve (ERC)

- Generated upon verification + ratio of unconsidered images.
- The portion of images to the left of red line in the histogram will be unconsidered for verification (FNMR @ FMR) task.

Error vs. Reject Curve

• The RI is a reliable metric for assessing recognizability, such that VLR faces that are more recognizable are learned with higher RIs (and vice versa).

Thank You

Jacky Chen Long Chai¹ Tiong-Sik Ng¹ Cheng-Yaw Low² Jaewoo Park¹ Andrew Beng Jin Teoh¹ ¹{jackyccl, ngtiongsik, julypraise,bjteoh}@yonsei.ac.kr ²{chengyawlow}@ibs.re.kr

