

SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked Autoencoders

Qingsen Yan¹, Song Zhang², Weiye Chen², Hao Tang³, Yu Zhu¹,

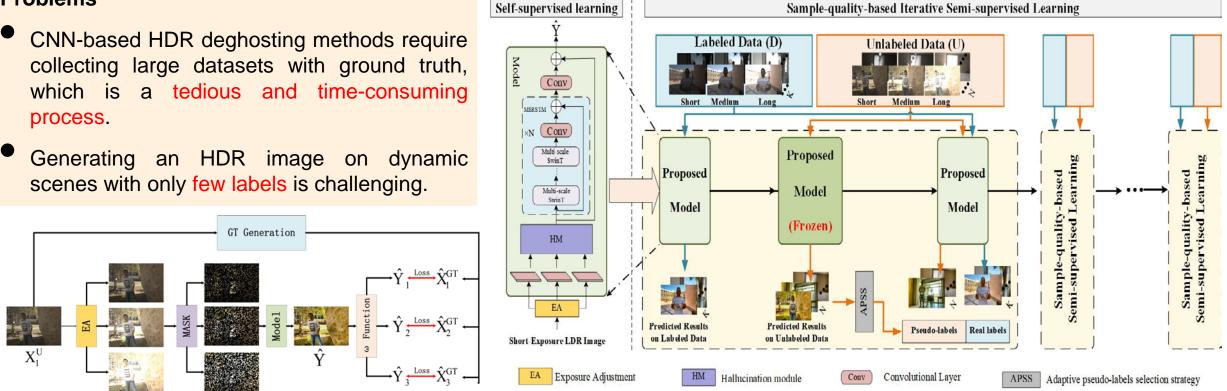
Jinqiu Sun¹, Luc Van Gool³, Yanning Zhang¹

¹Northwestern Polytechnical University, China, ²Xidian University, China, ³ETH Zurich, Switzerland



Summary

Problems



Stage 2

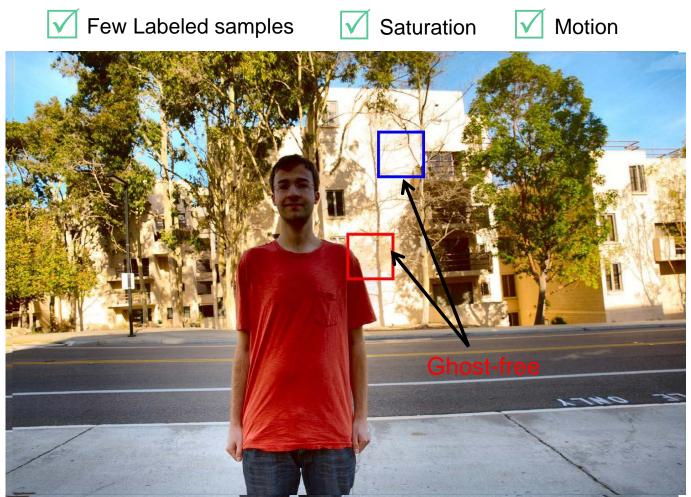
Stage 1

- In the first stage, we propose a multi-scale Transformer model based on self-supervised learning with a saturated-masked autoencoder to make it capable of recovering saturated regions.
- In the second stage, we propose a sample-quality-based iterative semi-supervised learning approach that learns to address ghosting problems.

Background

Few-shot HDR Reconstruction

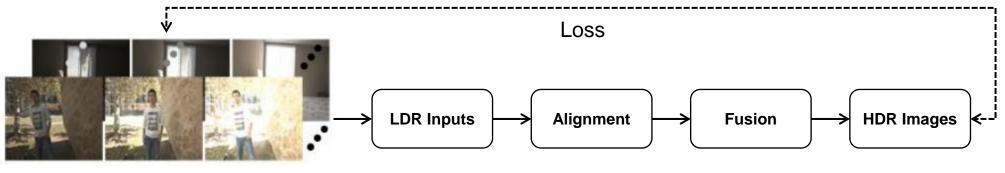
LDR Images



ADESIMERE & With Ingages s

Background

• Existing Methods



a large amount of labeled samples

It is challenging to collect a large amount of HDR-labeled samples

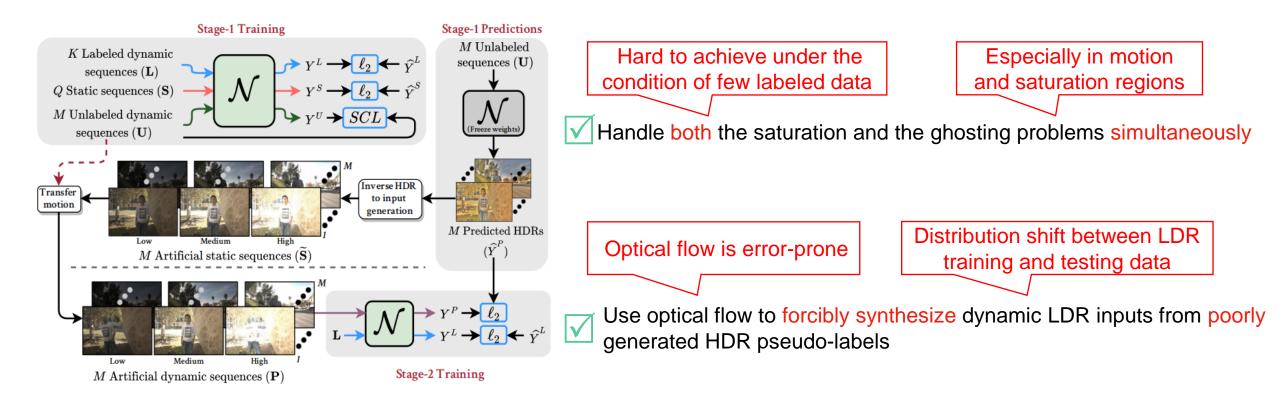
Reasons:

Generating a ghost-free HDR ground truth sample requires an absolute static background

It is time-consuming and requires considerable manpower to do manual post-examination

Background

- Existing Methods
 - FSHDR^[1]
 - 1. Train a preliminary model
- 2. Generate HDR pseudo-labels 3. Synthesize artificial dynamic LDR inputs



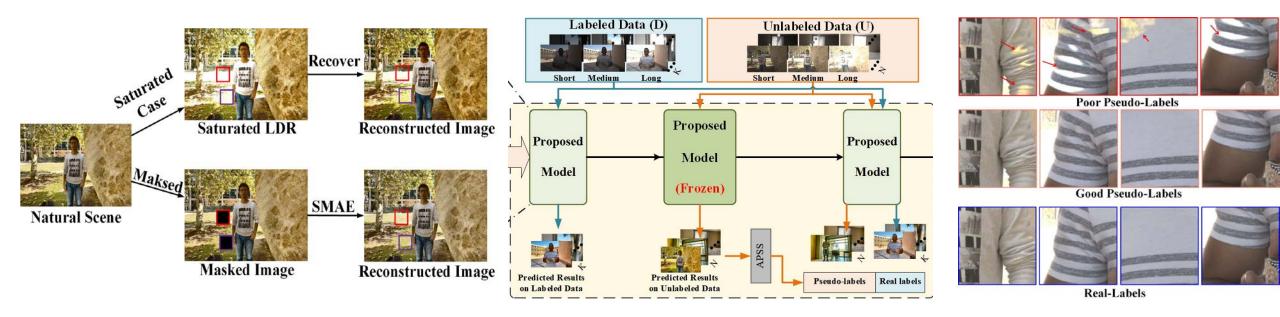
[1] K Ram Prabhakar, et.al. Labeled from unlabeled: Exploiting unlabeled data for few-shot deep hdr deghosting. In CVPR, 2021.

Movtivation

A reasonable way is to address the saturation problems first and then cope with the

ghosting problems with a few labeled samples.

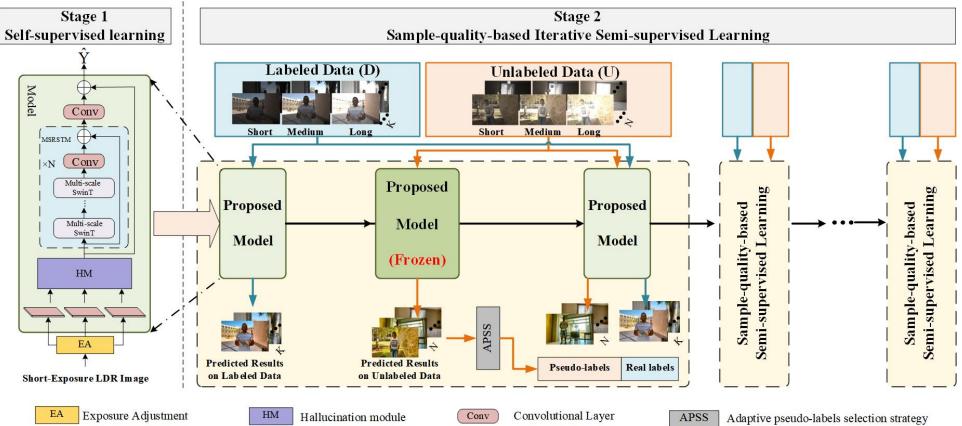
- Generate content of saturated regions by self-supervised learning
- Effectively use label data and unlabeled data.
- Select high-quality of pseudo-labels.



[2] Kaiming He, et.al. Masked autoencoders are scalable vision learners. In CVPR, 2022.

Our Method

• Overview

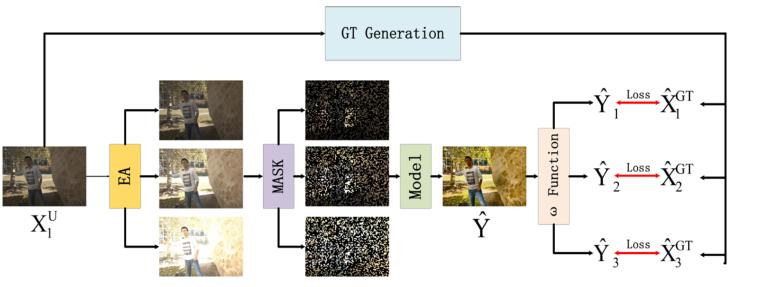


- In the first stage, we propose a multi-scale Transformer model based on self-supervised learning with a saturated-masked autoencoder to make it capable of recovering saturated regions.
- In the second stage, we propose a sample-quality-based iterative semi-supervised learning approach that learns to address ghosting problems.

Our Method

Self-supervised Learning Stage

• Use mask strategy to reconstruct an HDR image and addresses saturated problems from one LDR image.



EA Module. $X_{i}^{U} = clip((\frac{(X_{1}^{U})^{\gamma} \times t_{i}}{t_{1}})^{\frac{1}{\gamma}}), i = 2, 3. (1)$

 ω Function.

$$\hat{Y}_i = \omega(\hat{Y}) = (\hat{Y} \times t_i)^{\frac{1}{\gamma}}.$$
 (2)

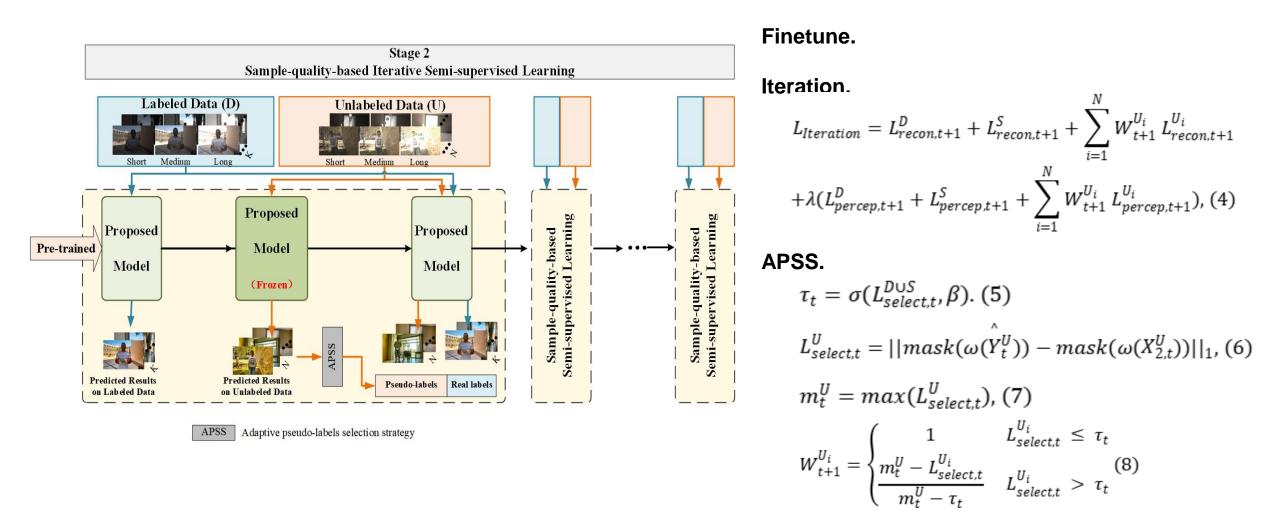
GT Generation.

$$X_i^{GT} = \left(\frac{(X_1^U)^{\gamma} \times t_i}{t_1}\right)^{\frac{1}{\gamma}}, i = 1, 2, 3.$$
 (3)

Our Method

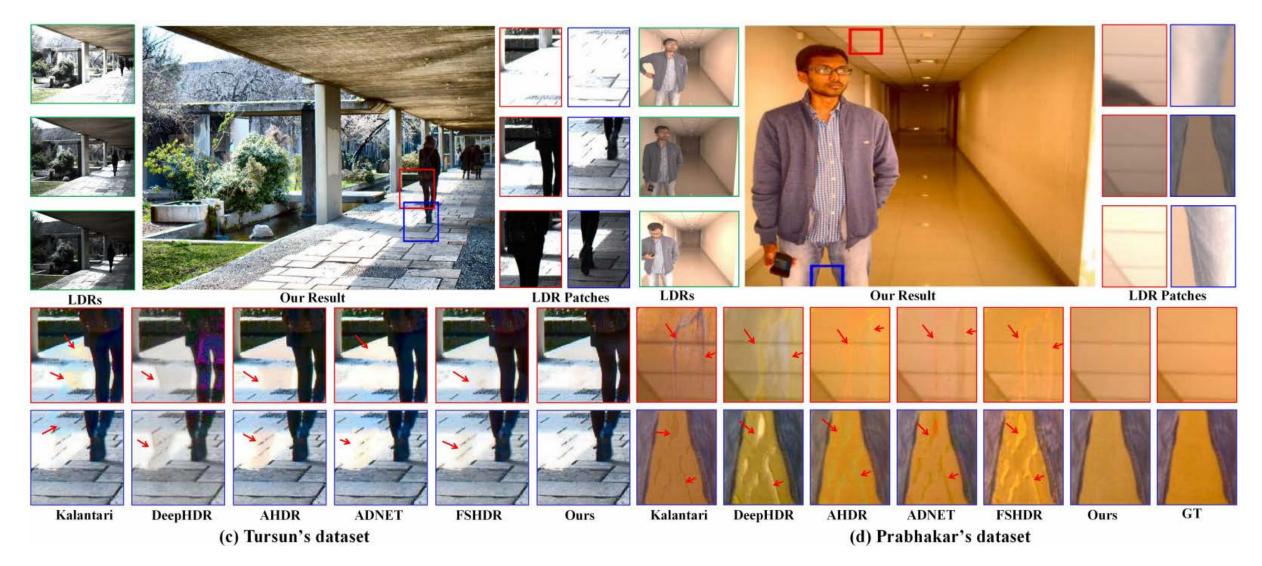
• Semi-supervised Learning Stage

• We propose a sample-quality-based iterative semi-supervised learning approach that learns to address ghosting problems.



Individual Datasets.

• Cross Datasets.



Quantitative Result

Table 1. The evaluation results on Kalantari's^[3] and Hu's^[4] datasets. The best and the second best results are highlighted in **Bold** and <u>Underline</u>, respectively.

Dataset	Metric	Setting	Kalantari	DeepHDR	AHDRNet	ADNet	FSHDR	Ours
Kalantari	PSNR-l	5 mar 5 shot	39.37±0.12	38.25±0.29	40.61±0.10	40.78±0.15	<u>41.39</u> ±0.12	41.54 ±0.10
	PSNR- μ	5way-5shot	39.86±0.19	38.62 ± 0.27	$41.05 {\pm} 0.32$	$40.93 {\pm} 0.38$	41.40 ± 0.13	41.61 ±0.08
	PSNR-l	5wey 1shot	36.94±0.44	36.67 ± 0.67	38.83 ± 0.39	38.96 ± 0.35	41.04 ± 0.11	41.14 ±0.11
	PSNR- μ	5way-1shot	37.33±1.21	37.01 ± 1.68	39.15±1.04	39.08 ± 1.06	41.13 ± 0.07	41.25 ±0.05
Hu	PSNR-l	Sweet Schot	41.36±0.25	40.73±0.66	46.37±0.76	$46.88 {\pm} 0.81$	<u>47.13</u> ±0.13	47.41 ±0.12
	PSNR- μ	5way-5shot	38.95 ± 0.14	$39.92 {\pm} 0.22$	43.42 ± 0.44	$43.79 {\pm} 0.48$	43.98±0.27	44.24 ±0.17
	PSNR-l	5wow 1shot	38.67±0.43	37.82 ± 0.86	44.64 ± 0.80	44.75 ± 0.84	44.94 ± 0.23	45.04 ±0.16
	PSNR- μ	5way-1shot	36.83 ± 0.62	38.49 ± 1.07	42.37 ± 1.42	42.41 ± 1.20	42.50 ± 0.87	42.55 ±0.44

[3] N. K. Kalantari, et.al. Deep high dynamic range imaging of dynamic scenes. In ACM TOG, 2017.

[4] Jinhan Hu, et.al. Sensor-realistic synthetic data engine for multi-frame high dynamic range photography. In CVPRW, 2020.

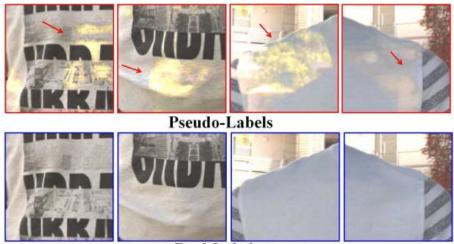
Quantitative Result

		Hu									
		PSNR-l	PSNR- μ	SSIM-l	SSIM- μ	HV2	PSNR-l	PSNR- μ	SSIM-l	SSIM- μ	HV2
S_1	Sen	38.57	40.94	0.9711	0.9780	64.71	33.58	31.48	0.9634	0.9531	66.39
	Hu	30.84	32.19	0.9408	0.9632	62.05	36.94	36.56	0.9877	0.9824	67.58
	FSHDR	<u>40.97</u>	<u>41.11</u>	0.9864	0.9827	<u>67.08</u>	42.15	<u>41.14</u>	<u>0.9904</u>	0.9891	71.35
	Ours (K=0)	41.12	41.20	0.9866	0.9868	67.16	42.99	41.30	0.9912	0.9903	72.18
S_2	Ours (K=1)	41.14	41.25	0.9866	0.9869	67.20	45.04	42.55	0.9938	0.9928	73.23
	Ours (K=5)	41.54	41.61	0.9879	0.9880	67.33	47.41	44.24	0.9974	0.9936	74.49
	Kalantari	41.22	41.85	0.9848	0.9872	66.23	43.76	41.60	0.9938	0.9914	72.94
	DeepHDR	40.91	41.64	0.9863	0.9857	67.42	41.20	41.13	0.9941	0.9870	70.82
C.	AHDRNet	41.23	41.87	0.9868	<u>0.9889</u>	67.50	49.22	45.76	0.9980	<u>0.9956</u>	75.04
S_3	ADNET	41.31	41.80	0.9871	0.9883	67.57	50.38	46.79	0.9987	0.9948	76.32
	FSHDR	41.79	<u>41.92</u>	<u>0.9876</u>	0.9851	<u>67.70</u>	49.56	45.90	0.9984	0.9945	75.25
	Ours	<u>41.68</u>	41.97	0.9889	0.9895	67.77	<u>50.31</u>	46.88	0.9988	0.9957	76.21
	Kalantari	25.87	21.44	0.8610	0.9176	60.00	10.23	16.95	0.6903	0.8346	49.10
	DeepHDR	25.92	21.43	0.8597	0.9170	60.02	<u>25.48</u>	20.86	0.9215	0.8354	66.83
S_4	AHDRNet	26.62	22.08	0.8737	0.9238	58.89	11.44	17.84	0.6732	0.8389	52.79
\mathcal{B}_4	ADNET	25.76	21.39	0.8686	0.8217	60.36	10.86	18.09	0.6915	0.8399	49.28
	FSHDR	28.03	22.01	<u>0.8751</u>	0.9203	<u>60.53</u>	12.82	19.37	0.7442	0.8347	55.34
	Ours	<u>27.91</u>	22.45	0.8764	0.9252	61.02	30.29	21.56	0.9440	0.8456	67.07
	Kalantari	31.24	33.10	0.9527	0.9593	63.99	19.82	18.63	0.7679	0.8742	59.50
S_5	DeepHDR	30.75	29.01	0.9244	0.9223	63.26	19.84	18.70	0.7698	0.8752	59.48
	AHDRNet	31.84	<u>33.49</u>	0.9588	0.9606	<u>64.40</u>	20.80	20.51	<u>0.8259</u>	0.9136	59.79
	ADNET	31.08	33.50	0.9536	<u>0.9636</u>	63.88	20.78	20.80	0.8268	<u>0.9173</u>	59.71
	FSHDR	32.70	32.24	0.9553	0.9465	64.37	20.23	19.71	0.7929	0.9026	59.63
	Ours	32.72	34.49	<u>0.9586</u>	0.9713	64.45	20.69	21.96	0.8257	0.9207	<u>59.76</u>

Ablation study

Table 3. Ablation study of 5 shot scenario on Kalantari's dataset.

#	Model	PSNR-l	$\textbf{PSNR-}\mu$	HDR-VDP-2
B 1	SSHDR	41.54	41.61	67.33
B2	Stage2Net	41.31	41.43	67.21
B 3	w/o APSS	41.49	41.45	67.29
B 4	AHDR*	41.48	41.51	67.30
B5	FSHDR*	41.41	41.43	67.26
B6	Vanilla-AHDR	40.61	41.05	66.95
B 7	Vanilla-FSHDR	41.39	41.40	67.25



Real-Labels Figure 5. Visual results of poor pseudo-labels.