

Learning the Distribution of Errors in Stereo Matching for Joint Disparity and Uncertainty Estimation

Liyan Chen, Weihan Wang, Philippos Mordohai

Email: <u>Ichen39@stevens.edu</u> Poster Section : THU-AM-072 Poster Location : West Building Exhibit Halls ABC 072 Implementation: <u>https://github.com/lly00412/SEDNet</u>

Contributions

A novel joint estimation network, SEDNet (Stereo Error Distribution Network) predicts disparity as well as the aleatoric uncertainty.

- A differentiable soft-histogramming technique used to approximate the distributions of disparity errors and estimated uncertainties.
- A matching error loss based on KL divergence applied on histograms obtained with the above technique to improve the precision of uncertainty estimation.

Joint estimation of disparity and uncertainty / confidence benefits both tasks due to multi-task learning.

rgb_img

Neural Network

Confidence Estimation conf_map binary variable w/ BCE loss **Uncertainty Estimation**

Problem

Aleatoric Uncertainty Estimation

(Kendall and Gal, 2017) & (Ilg et al., 2018) Minimizing NLL loss per pixel

$$\mathcal{L}_{log} = \frac{1}{n} \sum_{i=1}^{n} \frac{|\hat{d}^{(i)} - d^{(i)}|}{\exp(s^{(i)})} + \frac{1}{n} \sum_{i=1}^{n} s^{(i)}$$

Aleatoric Uncertainty Estimation

(Kendall and Gal, 2017) & (Ilg et al., 2018) Minimizing NLL loss per pixel

$$\mathcal{L}_{log} = \frac{1}{n} \sum_{i=1}^{n} \frac{|\hat{d}^{(i)} - d^{(i)}|}{\exp(s^{(i)})} + \frac{1}{n} \sum_{i=1}^{n} s^{(i)}$$

Error Map

Aleatoric Uncertainty Estimation

(Kendall and Gal, 2017) & (Ilg et al., 2018) Minimizing NLL loss per pixel

$$\mathcal{L}_{log} = \frac{1}{n} \sum_{i=1}^{n} \frac{|\hat{d}^{(i)} - d^{(i)}|}{\exp(s^{(i)})} + \frac{1}{n} \sum_{i=1}^{n} s^{(i)}$$

Error Map

Uncertainty Map

Mismatch Between Error and Uncertainty

Uncertainty Map

Learning the Distribution of Errors

SEDNet - Pipeline Overview

SEDNet – Uncertainty Estimator

Squared differences between disparity estimates at different scales

SEDNet – Uncertainty Estimator

Matching the Distribution of Error

To prepare the inputs to the matching error loss, we need to build the distributions.

Convert Error Map to Distribution

Convert Error Map to Distribution

1. Pick *m* bin centers, where $c_1 = \mu_e$, $c_m = \mu_e + m\sigma_e$

- 1. Pick *m* bin centers, where $c_1 = \mu_e$, $c_m = \mu_e + m\sigma_e$
- 2. Compute *L*2 distances between e_i and bin centers: $d_{i,1}, d_{i,2}, \dots, d_{i,m}$

- 1. Pick *m* bin centers, where $c_1 = \mu_e$, $c_m = \mu_e + m\sigma_e$
- 2. Compute *L*2 distances between e_i and bin centers: $d_{i,1}, d_{i,2}, \dots, d_{i,m}$
- 3. Convert the distances $d_{i,j}$ to pixel weights

$$w_j(e_i) = \lambda_1 \exp(-\frac{d_{i,m}}{\lambda_2})$$

all centers to build the find distribution (histogram)

Convert Uncertainty Map to Distribution

Uncertainty Map

Distribution of Uncertainty

Using the same bin centers as for the errors!

Matching the Distribution of Error

Using KL-divergence loss $\mathcal{L}_{KL} = \mathcal{D}_{KL}(\mathcal{H}_{e}||\mathcal{H}_{\sigma})$

Loss Function

$$\mathcal{L} = \sum_{k=1}^{K} c^k \cdot (\mathcal{L}_{log}^k + \mathcal{L}_{KL}^k)$$

- All disparity and uncertainty maps are upsampled to the highest resolution
- \succ c^k denotes the coefficients for the k^{th} resolution level (We use K = 4 in our experiments)
- Sum up the two loss across all resolution

Datasets & Baselines

Datasets

Baselines

- Pick strong baselines according to recent survey (Poggi et al., 2021)
- GwcNet (Guo et al., 2019) + L1
- LAF-Net (Kim et al., 2019) + BCE [Confidence Network]
- GwcNet + \mathcal{L}_{log} (Kendall and Gal., 2017)

Primary Results – Disparity & Uncertainty Estimation

In domain: train on VK2, test on VK2

Dataset	Method	EPE(↓)	MAPE(↓)	AUC Opt.(↓)	AUC Est.(↓)
Virtual KITTI 2	GwcNet + \mathcal{L}_{log}	0.3899	0.4136	4.6872	12.5320
	SEDNet	0.3236	0.3561	4.2767	9.9843

Cross domain: train on VK2, test on DS-Weather

Dataset	Method	EPE(↓)	MAPE(↓)	AUC Opt.(↓)	AUC Est.(↓)
DS-Weather	GwcNet + \mathcal{L}_{log}	2.3944	2.1443	41.1909	95.4264
	SEDNet	1.7051	1.5842	39.8057	87.1882

- **MAPE** is the mean L1 distance between the error and the observation uncertainty scalar, σ .
- Please see the paper for more results.

Qualitative Results – Scene Flow

Synthetic stereo pairs for flying objects

SEDNet has smaller errors and more accurate uncertainty.

Qualitative Results – Virtual KITTI 2

Synthetic stereo pairs for driving in different weather

SEDNet has better disparity estimation in different weather.

Qualitative Results – Virtual KITTI 2

Comparing the challenging samples

The improvement of SEDNet on disparity and uncertainty estimation is more visible especially under bad weather.

Qualitative Results – DrivingStereo

Real stereo pairs for foggy weather

 \mathcal{L}_{log}

SEDNet

 \mathcal{L}_{log}

- The foggy day are usually **very dark**, which makes distinguishing objects in the shadow difficult.
- SEDNet still performs better in predicting the uncertainty of the objects **far from the camera** and in the bottom right **dark corner**.

SEDNet

Qualitative Results – DrivingStereo

Real stereo pairs for rainy weather

- Rainy images suffer from **poor illumination**, also face challenges due to **reflections in the water**.
- SEDNet captures **more faithful details** in both disparity and uncertainty maps.

Code available at

https://github.com/lly00412/SEDNet

Poster Section: THU-AM-072

Thank you !