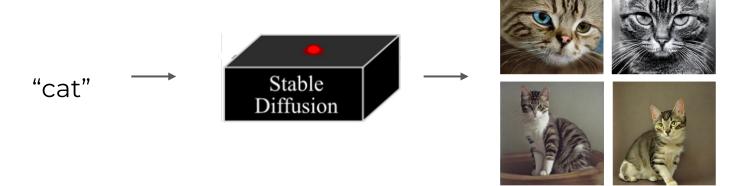
Fake it till you make it: Learning transferable representations from synthetic ImageNet clones

CVPR Poster ID: TUE-PM-372

Text-to-image generative models

Stable Diffusion/DALL-E/Imagen

• High-quality realistic images



Rombach et al., **"High-Resolution Image Synthesis with Latent Diffusion Models** ", CVPR, 2022 Ramesh et al. **"Zero-shot text-to-image generation**", ICML 2021 Saharia et al., **"Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding**", NeurIPS, 2022

Text-to-image generative models

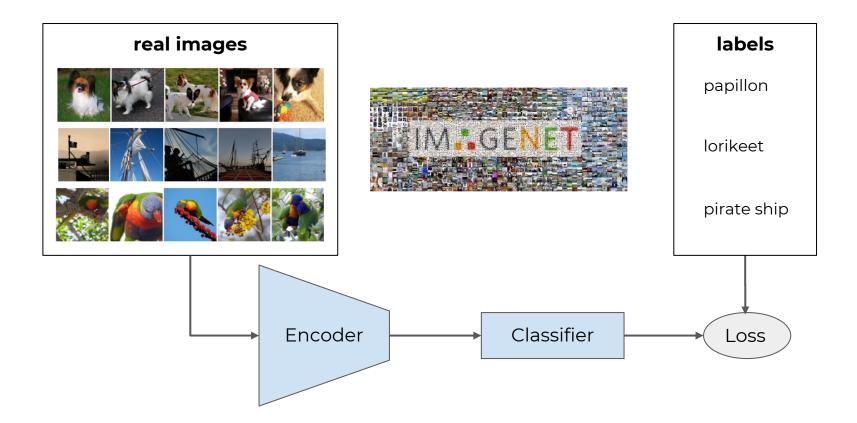
Stable Diffusion/DALL-E/Imagen

• High-quality realistic images

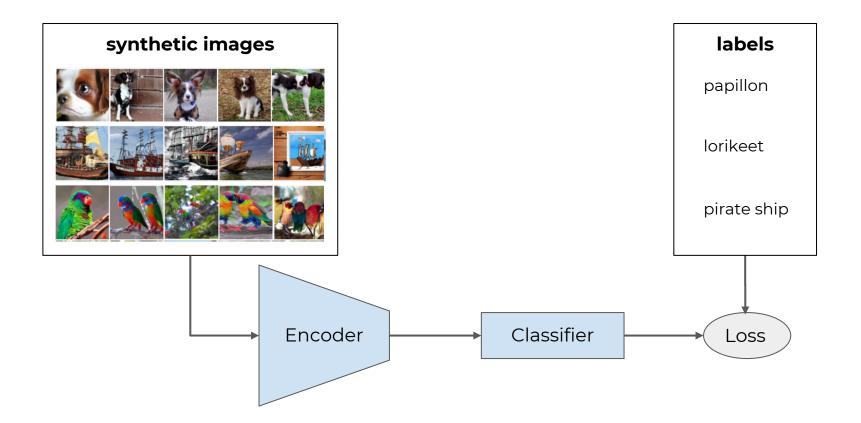
Do we still need real images for learning visual representations?

Rombach et al., **"High-Resolution Image Synthesis with Latent Diffusion Models**", CVPR, 2022 Ramesh et al. **"Zero-shot text-to-image generation**", ICML 2021 Saharia et al., **"Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding**", NeurIPS, 2022

Supervised learning on ImageNet-1K

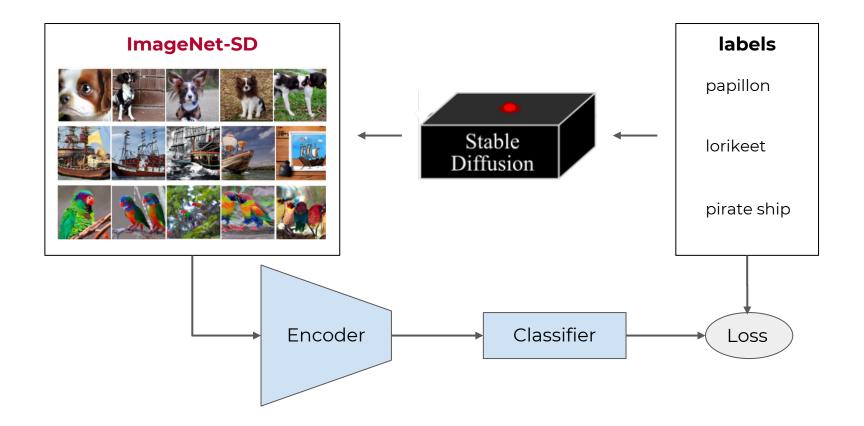


Deng et al. "**Imagenet: A large-scale hierarchical image database**", CVPR 2009 Russakovsky et al., **"Imagenet large scale visual recognition challenge**", IJCV, 2015



Deng et al. "**Imagenet: A large-scale hierarchical image database**", CVPR 2009 Russakovsky et al., **"Imagenet large scale visual recognition challenge**", IJCV, 2015

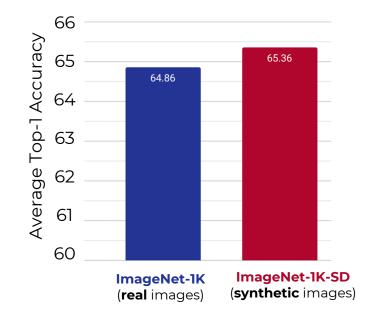
Training image classifiers on ImageNet-SD



Performance on ImageNet-1K val. set (real images)

80-80.4 70 Top-1 Accuracy 60 49.1 50 40 ImageNet-1K-SD ImageNet-1K (synthetic images) (**real** images)

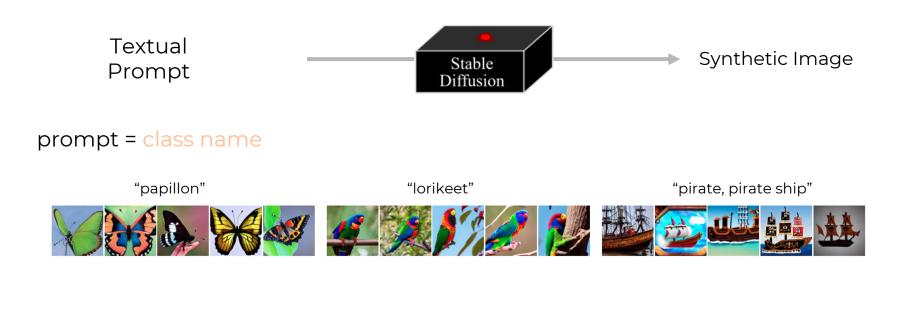
Performance on **15 transfer datasets** (*real* images)



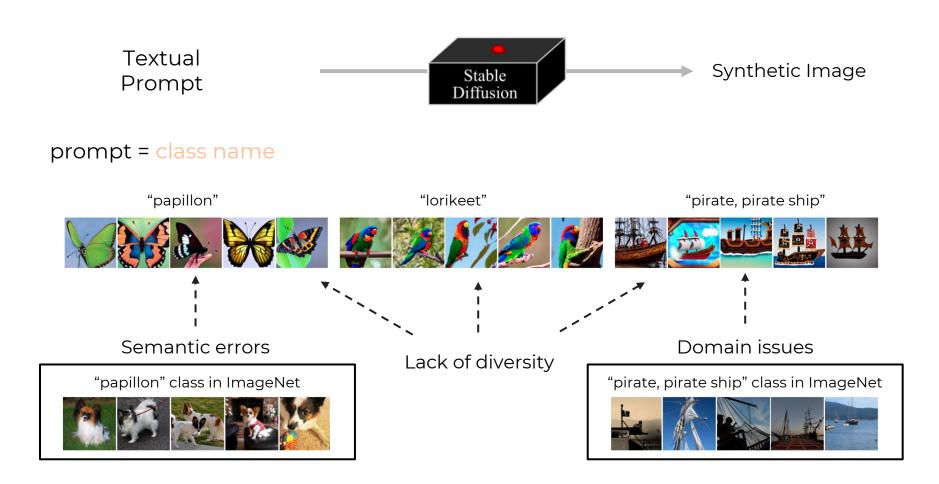
Prompts for synthesizing ImageNet clones

Rombach et al., **"High-Resolution Image Synthesis with Latent Diffusion Models**", CVPR, 2022 Pretrained model available at **https://huggingface.co/CompVis/stable-diffusion-v1-4**

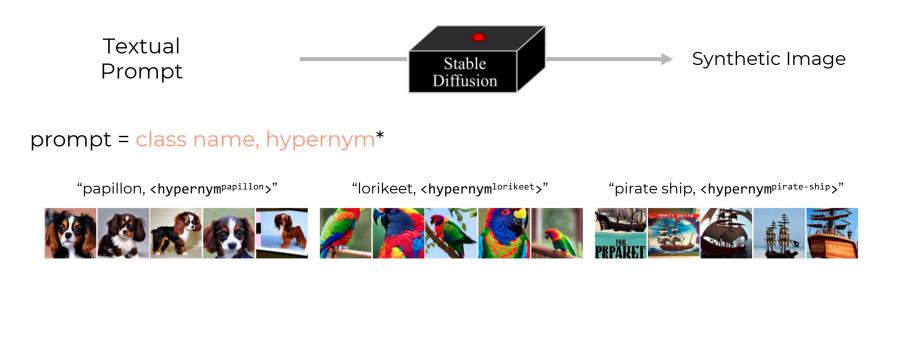
Prompts for synthesizing ImageNet clones



Prompts for synthesizing ImageNet clones

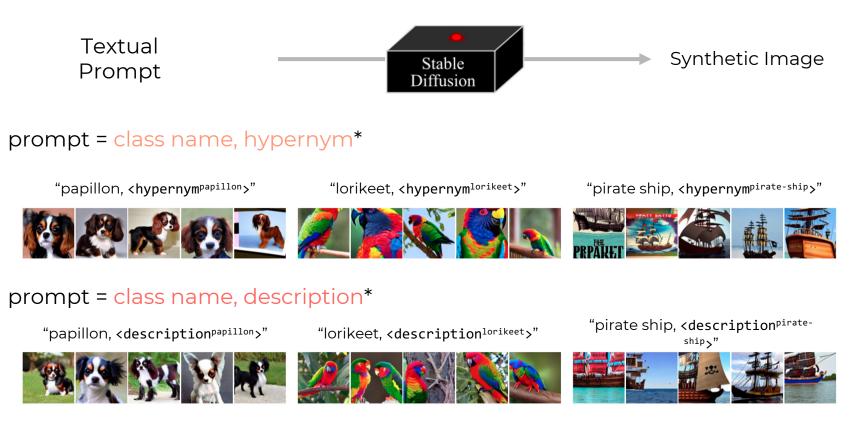


Tackling semantic & domain issues



* from Wordnet lexical database

Tackling semantic & domain issues



* from Wordnet lexical database

Increasing diversity

prompt = class name, hypernym inside background**

"papillon,<hypernym^{papillon}> inside<background>" "lorikeet, <hypernym^{lorikeet}> inside <background>" "pirate ship, <hypernym^{pirate-ship}> inside <background>"

Increasing diversity

prompt = class name, description (+ reduce guidance scale)

"papillon, <description
papillon>"

"lorikeet, <description^{lorikeet}>"

"pirate ship, <description^{pirate-} ship>"

** from Places 365 dataset

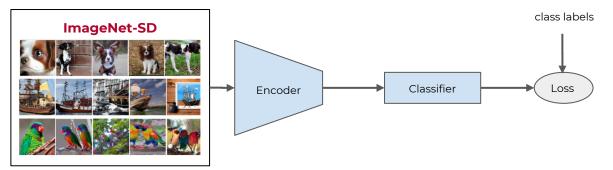
The ImageNet-SD datasets

ImageNet-SD datasets:

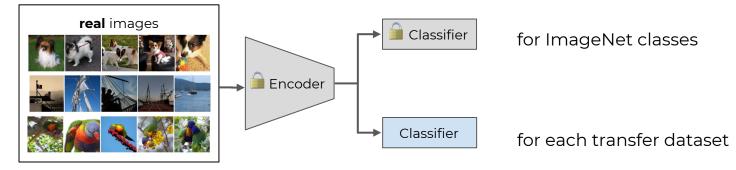
Synthetic clones of different ImageNet subsets

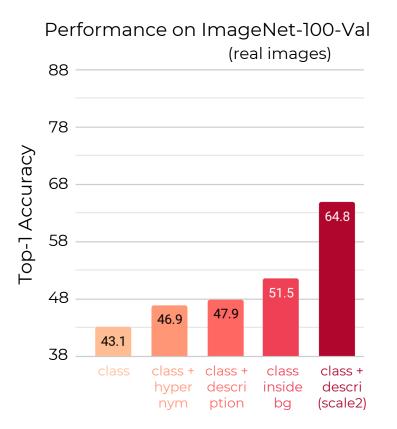
- ImageNet-100-SD: 100 classes, 130k images
- ImageNet-1K-SD: 1000 classes, 1.2M images

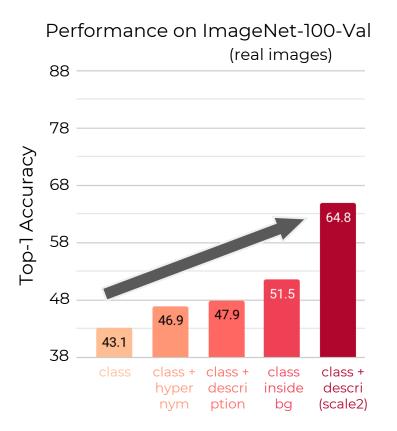
Training with synthetic data



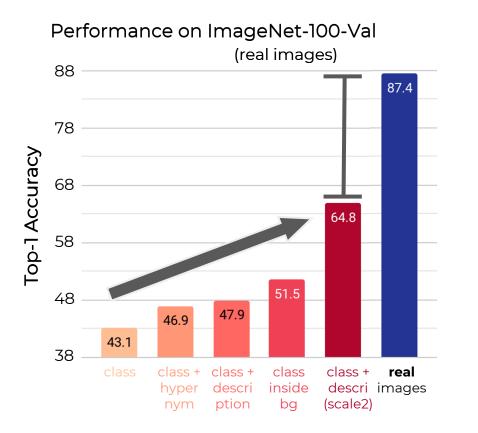
Evaluation protocol



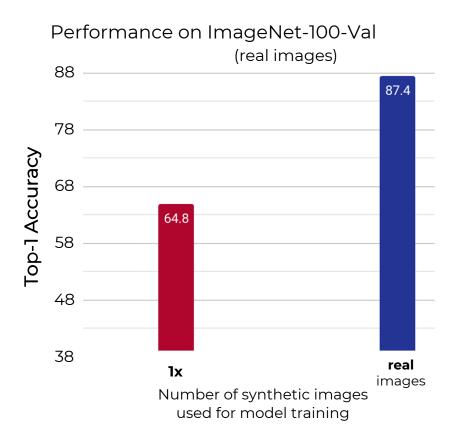


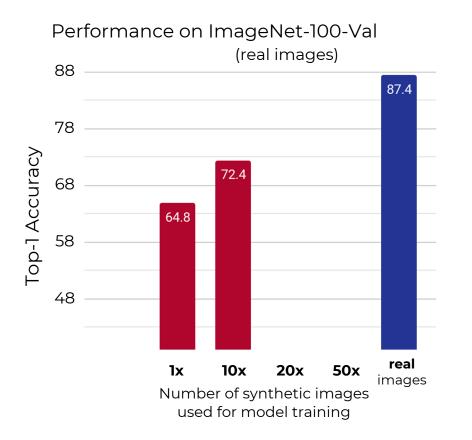


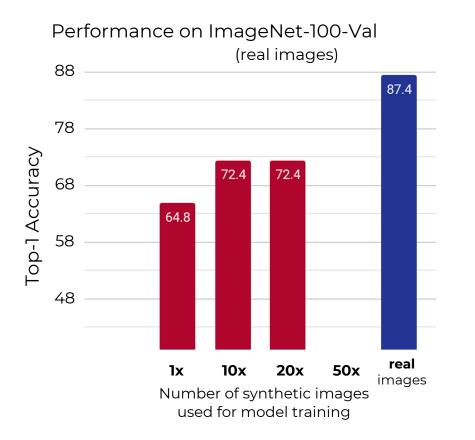
• Addressing semantic, domain and diversity issues leads to better performance

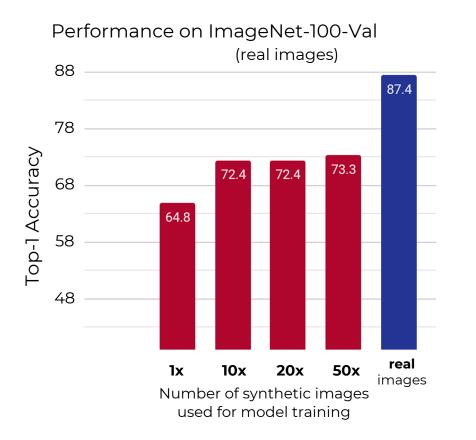


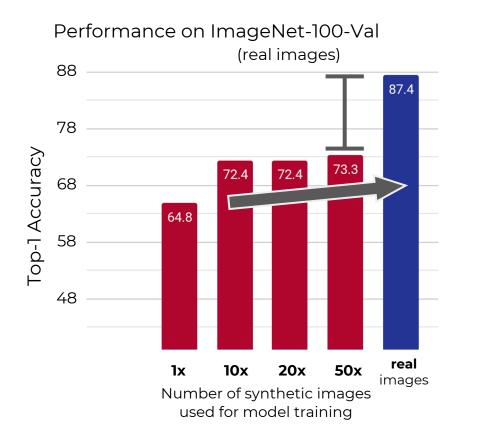
- Addressing semantic, domain and diversity issues leads to better performance
- Significant gap between the models trained on real vs.
 synthetic images for the training classes





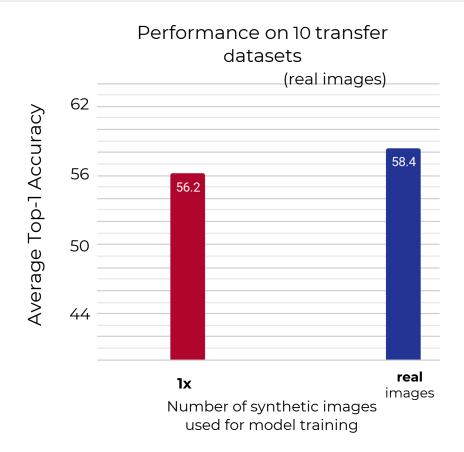




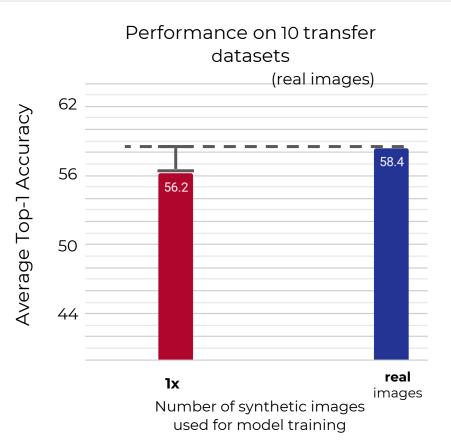


- Increasing the number of synthetic images slightly reduces the gap
- Unlikely to close it

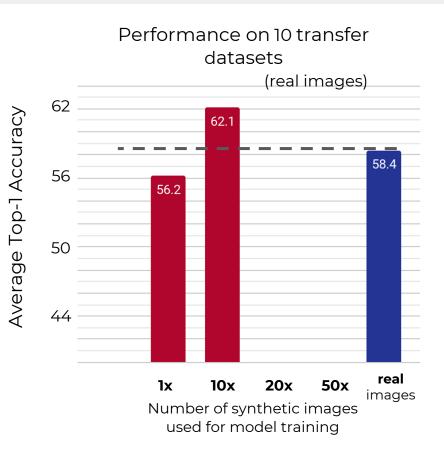
ImageNet-100: Results for transfer learning



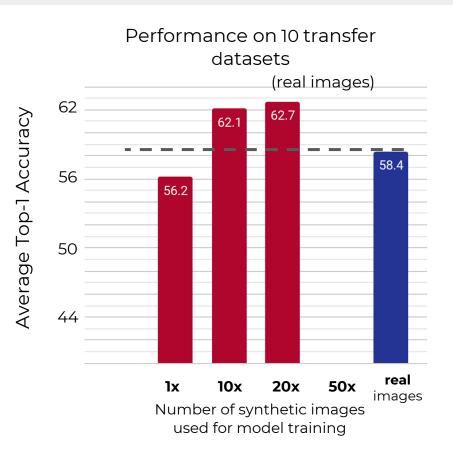
ImageNet-100: Results for transfer learning



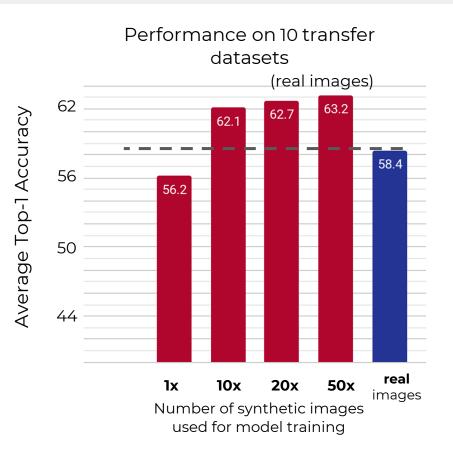
- Increasing the number of synthetic images leads to higher transfer learning performance
- Representations from the model trained **synthetic** images *outperform* the ones from **real** for transfer learning



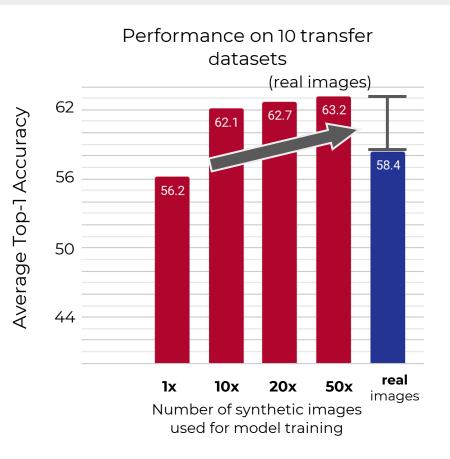
- Increasing the number of synthetic images leads to higher transfer learning performance
- Representations from the model trained **synthetic** images *outperform* the ones from **real** for transfer learning



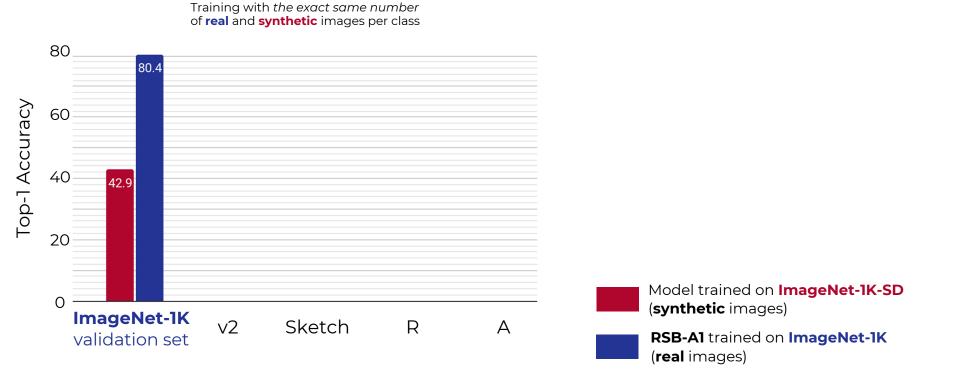
- Increasing the number of synthetic images leads to higher transfer learning performance
- Representations from the model trained **synthetic** images *outperform* the ones from **real** for transfer learning

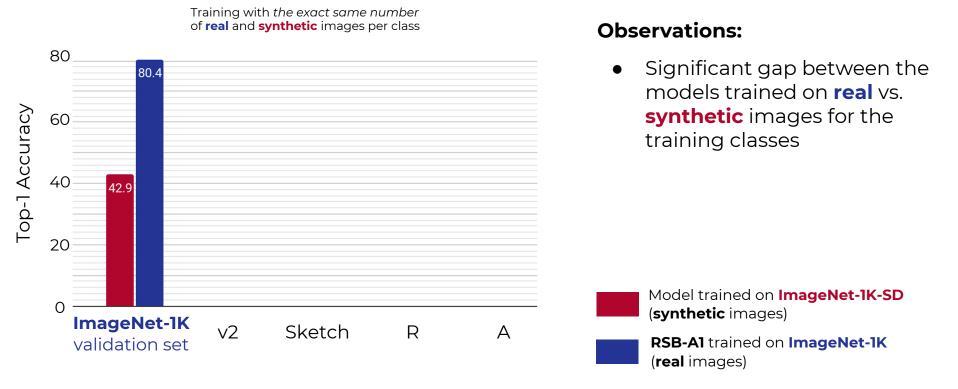


- Increasing the number of synthetic images leads to higher transfer learning performance
- Representations from the model trained **synthetic** images *outperform* the ones from **real** for transfer learning



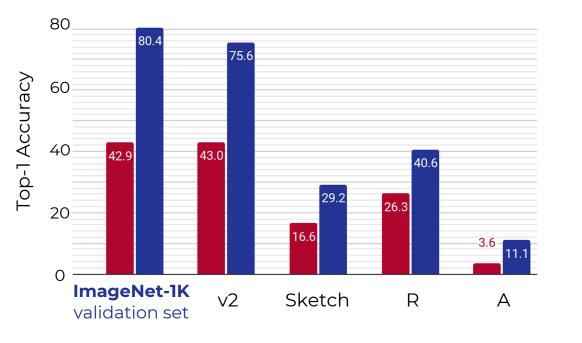
ImageNet-1K: Comparison to the state-of-the-art





[RSB-A1] Wightman et al., "ResNet strikes back: An improved training procedure in timm.", NeurIPSW, 2021

ImageNet-1K: Comparison to the state-of-the-art



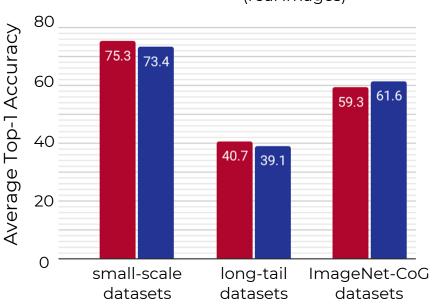
Observations:

- Significant gap between the models trained on real vs.
 synthetic images for the training classes
- Relative gap is smaller for other variants especially ones with domain shifts

Model trained on **ImageNet-1K-SD** (**synthetic** images)

RSB-A1 trained on ImageNet-1K (real images)

ImageNet-1K: Comparison to the state-of-the-art



Performance on 15 transfer datasets (real images)

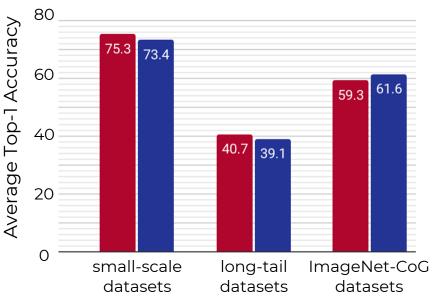
Model trained on **ImageNet-1K-SD** (synthetic images)

[ImageNet-CoG] Sariyildiz et al., "**Concept Generalization in Visual Representation Learning**", ICCV, 2021 [Long-tail] Horn et al., "**The iNaturalist species classification and detection dataset**", CVPR, 2018 [Small-scale] Kornblith et al., "**Do better ImageNet models transfer better?**", CVPR, 2019 RSB-A1 trained on ImageNet-1K (real images)

- The model trained on **synthetic** images is *on-par or better* than the publicly available, state-ofthe-art, **RSB-A1** model
- Synthesizing more images could lead to further gains

Performance on 15 transfer datasets

(real images)



Model trained on **ImageNet-1K-SD** (synthetic images)

[ImageNet-CoG] Sariyildiz et al., "**Concept Generalization in Visual Representation Learning**", ICCV, 2021 [Long-tail] Horn et al., "**The iNaturalist species classification and detection dataset**", CVPR, 2018 [Small-scale] Kornblith et al., "**Do better ImageNet models transfer better?**", CVPR, 2019 RSB-A1 trained on ImageNet-1K (real images) Take home message

What if we replace the **ImageNet** dataset with **synthetic data** from **Stable Diffusion**?

ImageNet-SD:

Synthetic ImageNet clones with Stable Diffusion images

Result summary:

- Decent but inferior performance on the ImageNet classes
- On-par or better performance than the state-of-the-art for transfer learning

Bigger picture:

• Image-free distillation of a generic text-to-image generation model into a visual encoder of arbitrary architecture, for solving a specific task

