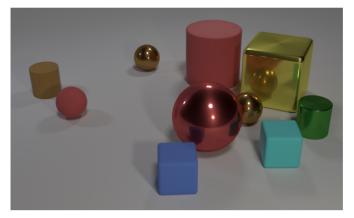


Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning


Highlight | WED-PM-249 | Jun 21, 2023

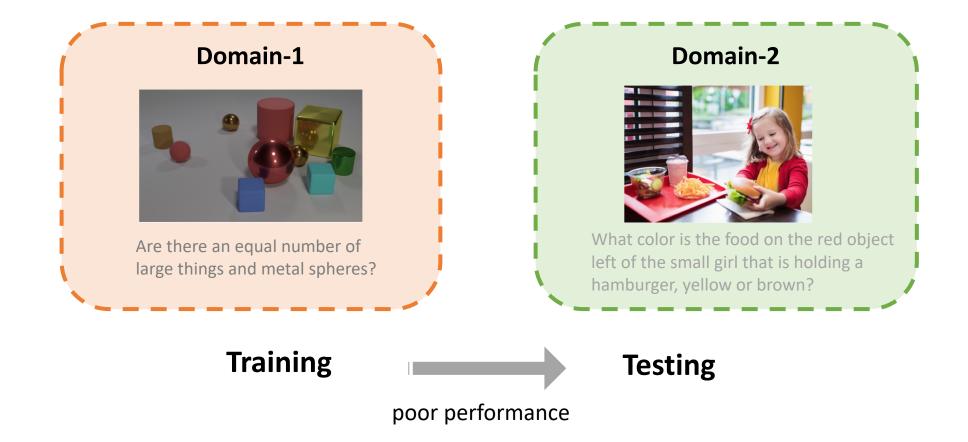
Zhuowan Li¹ Xingrui Wang² Elias Stengel-Eskin¹ Adam Kortylewski^{3,4} Wufei Ma¹ Benjamin Van Durme¹ Alan Yuille¹

Visual Reasoning

CLEVR

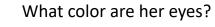
Are there an equal number of large things and metal spheres?

VQA2.0

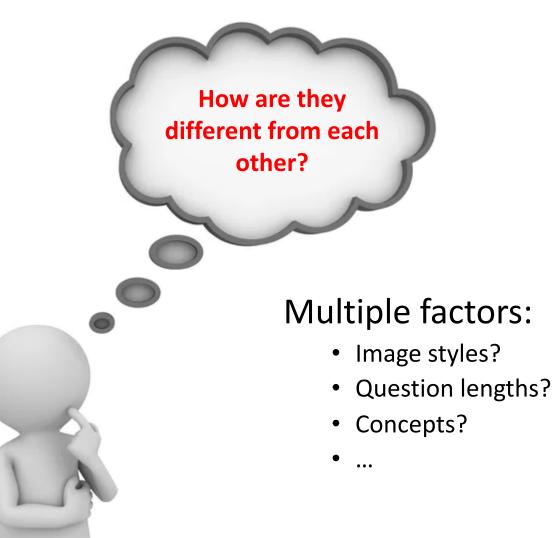

What color are her eyes?

What color is the food on the red object left of the small girl that is holding a hamburger, yellow or brown?

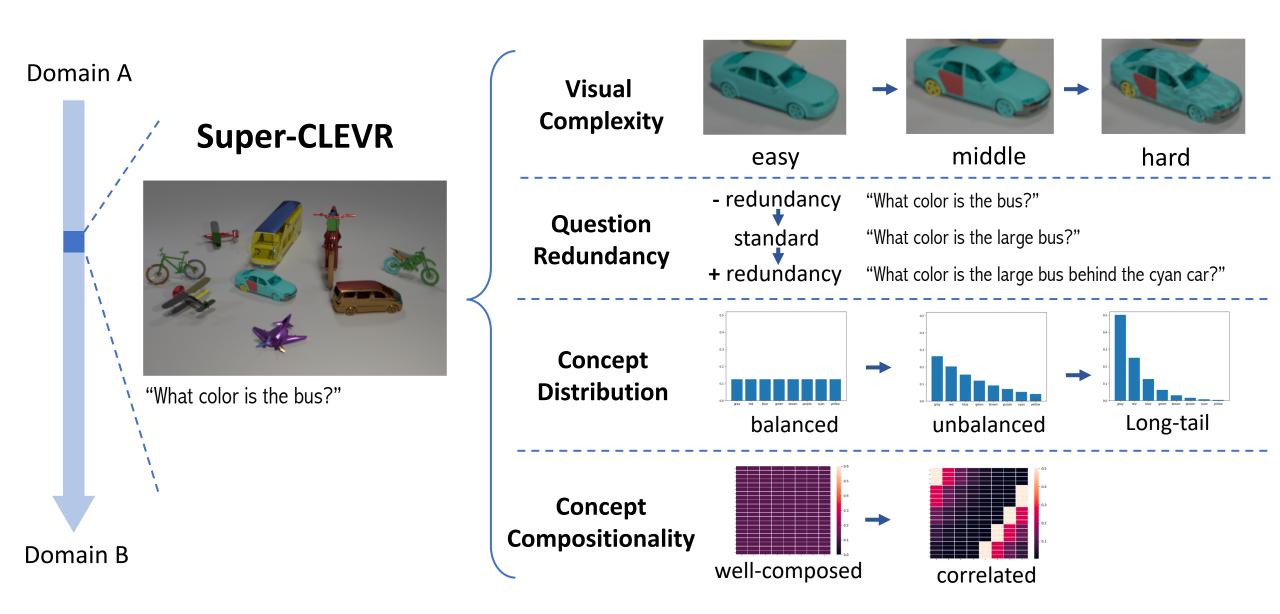
Visual reasoning models suffer on out-of-domain testing



Domain gaps contain multiple factors



Are there an equal number of large things and metal spheres?



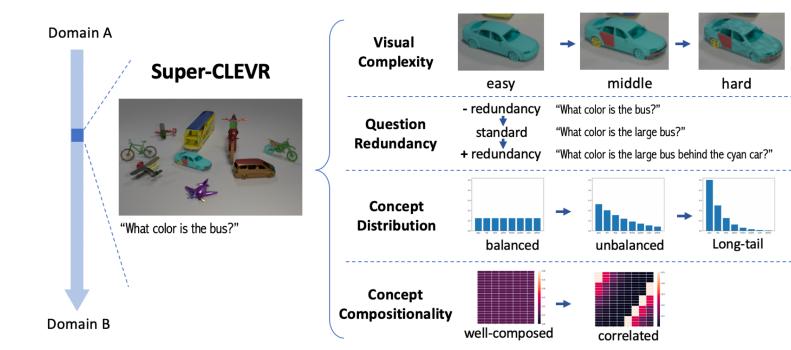
What color is the food on the red object left of the small girl that is holding a hamburger, yellow or brown?

Super-CLEVR:

study each domain shift factor separately

Super-CLEVR: a controllable dataset

The dirtbike that is the same size as the brown motorbike is what color?



What is the color of the small car?

- Separately study the 4 domain shift factors
- 5 models are studied
- Analysis finding: modular training + probabilistic execution best model

In more detail...

- 4 domain shift factors
- 5 models we studied
- Analysis Results

Study domain shift by decomposition

Factors contributes to domain shifts in visual reasoning:

- visual complexity
- question redundancy
- concept distribution
- concept compositionality
- ...

visual complexity

how hard is the image

easy



Hard

hard

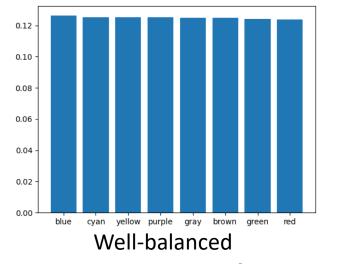
- question redundancy
- concept distribution
- concept compositionality

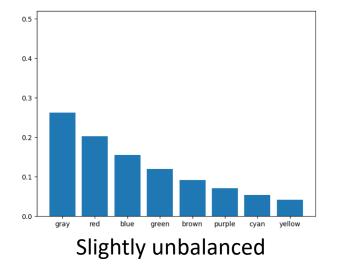
- visual complexity
- question redundancy

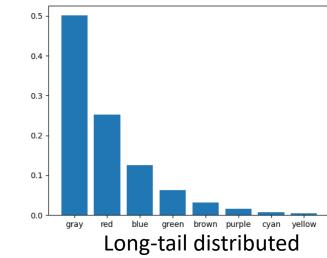
the question may contain unnecessary information

What does the little boy in front of the table hold?

- concept distribution
- concept compositionality

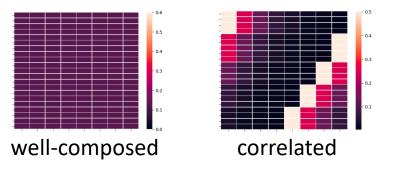


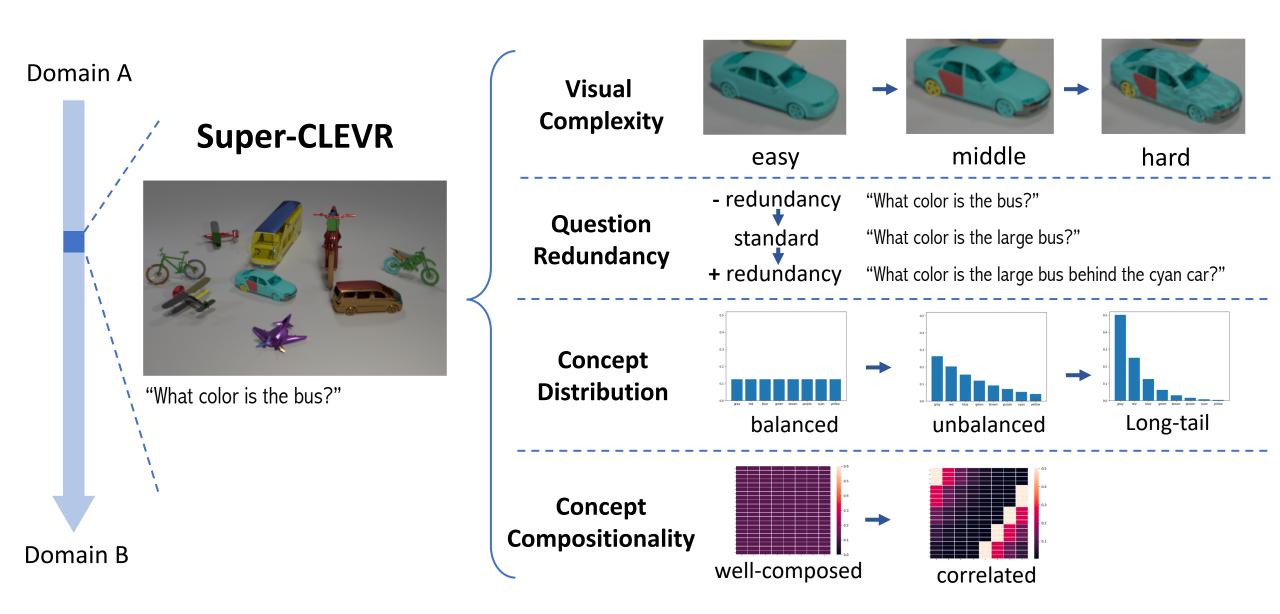

What is feeding the large animal behind the fence?


redundancy "What color is the bus?"
standard "What color is the large bus?"
+ redundancy "What color is the large bus behind the cyan car?"

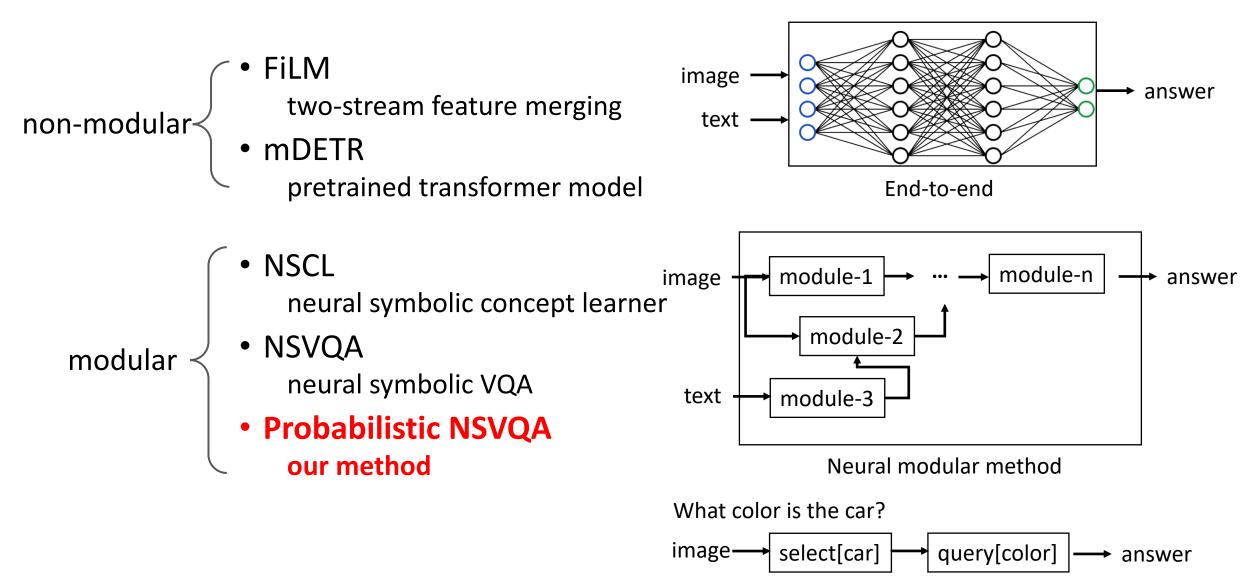
- visual complexity
- question redundancy
- concept distribution

The distribution the concepts (objects names and attributes)

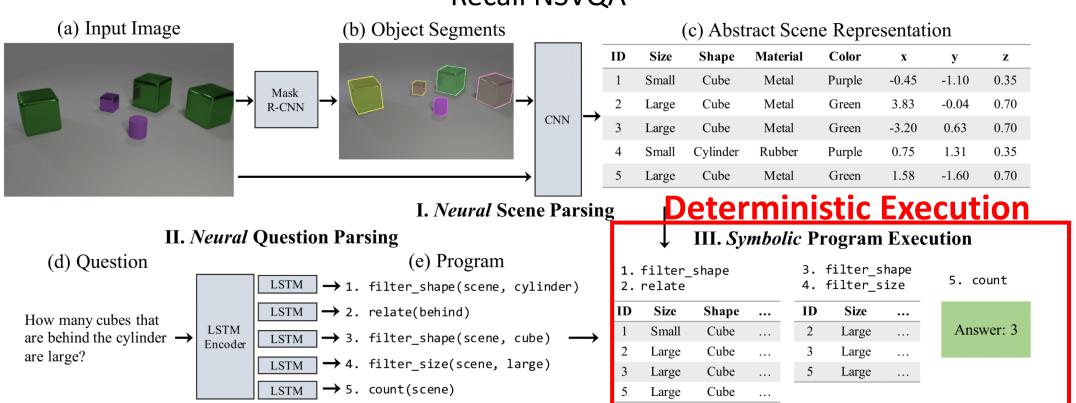

concept compositionality


- visual complexity
- question redundancy
- concept distribution

concept compositionality

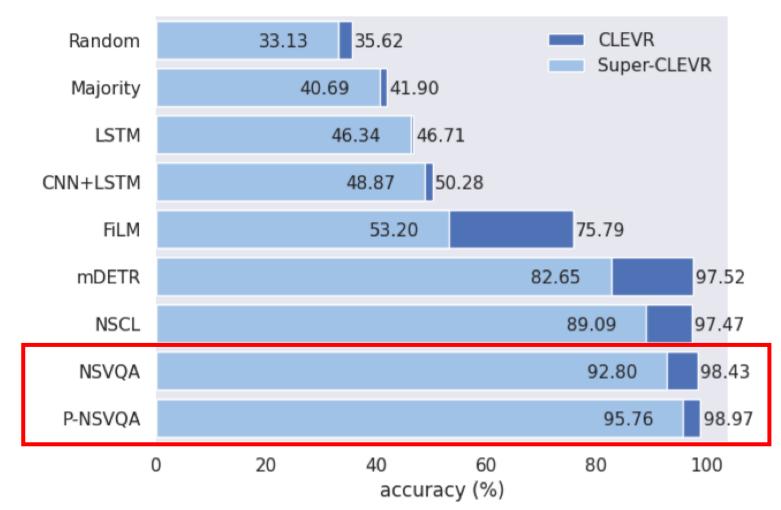

Some concepts always co-occur with another:

- Bananas are usually yellow bananas
- Boys are usually little boys
- Skies are usually blue skies
- ...



5 models are studied

Probabilistic NSVQA (our model)


Recall NSVQA

Make it probabilistic!

Considering the uncertainty of scene parsing

Yi, Kexin, et al. "Neural-symbolic vqa: Disentangling reasoning from vision and language understanding." NeurIPS 2018.

In-domain Results

- Super-CLEVR is harder than CLEVR
- P-NSVQA is the best

Out-of-domain testing: complete results

		FiLM			mDETR	2		NSCL			NSVQA	L	Pr	ob NSV(QA
	Visual Complexity														
	easy	mid	hard	easy	mid	hard	easy	mid	hard	easy	mid	hard	easy	mid	hard
easy	<u>59.96</u>	<u>53.95</u>	<u>50.66</u>	<u>93.36</u>	<u>84.30</u>	<u>82.97</u>	<u>95.13</u>	<u>92.31</u>	<u>90.81</u>	<u>95.19</u>	<u>94.19</u>	<u>94.09</u>	<u>96.76</u>	<u>95.98</u>	<u>96.37</u>
mid hard	57.41 55.95	53.28 53.11	50.18 50.47	83.34 79.71	82.36 79.94	81.27 80.71	84.5 76.85	89.10 78.66	86.33 85.08	81.99 73.11	92.80 79.71	93.78 92.65	86.25 79.81	95.76 86.47	95.11 95.36
			20117				estion F					2102	77101		
	rd-	rd	rd+	rd-	rd	rd+	rd-	rd	rd+	rd-	rd	rd+	rd-	rd	rd+
rd-	51.42	52.54	53.51	83.94	80.37	66.28	88.64	88.82	90.33	92.95	92.94	92.67	95.66	95.72	95.43
rd	50.39	53.28	54.78	82.77	82.36	70.36	88.45	<u>89.10</u>	<u>91.45</u>	91.19	92.78	92.14	94.87	95.72	95.43
rd+	46.14	52.30	<u>71.47</u>	78.48	<u>84.05</u>	<u>90.42</u>	87.94	88.34	91.16	91.38	91.96	<u>92.80</u>	94.88	95.47	<u>95.72</u>
						C	oncept D	listribut	ion						
	bal	slt	long	bal	slt	long	bal	slt	long	bal	slt	long	bal	slt	long
bal	50.47	53.04	54.35	<u>80.71</u>	75.79	74.54	85.08	83.79	75.10	92.65	90.82	83.74	95.36	94.89	89.88
long	49.43	<u>54.75</u>	<u>62.96</u>	79.06	<u>80.29</u>	<u>90.66</u>	<u>85.33</u>	<u>89.42</u>	<u>91.10</u>	<u>92.73</u>	<u>93.38</u>	<u>92.53</u>	<u>96.31</u>	<u>96.32</u>	<u>95.25</u>
head	48.60	<u>58.06</u>	<u>61.60</u>	80.75	<u>79.60</u>	<u>87.46</u>	84.58	88.39	<u>90.19</u>	<u>93.87</u>	<u>94.82</u>	<u>92.48</u>	<u>96.42</u>	<u>96.80</u>	<u>95.92</u>
tail	51.80	48.70	50.08	<u>81.50</u>	70.88	60.94	86.10	80.27	60.55	90.26	89.20	75.32	94.08	93.20	82.68
oppo	49.06	48.93	46.68	79.13	68.37	56.98	85.07	77.86	55.14	91.22	88.65	71.32	95.76	94.09	79.74
	Concept Compositionality														
	co-0	co-1	co-2	co-0	co-1	co-2	co-0	co-1	co-2	co-0	co-1	co-2	co-0	co-1	co-2
co-0	<u>53.28</u>	57.00	56.1	<u>83.36</u>	77.03	82.43	<u>89.1</u>	82.52	83.77	<u>92.80</u>	<u>90.11</u>	91.59	<u>95.76</u>	94.02	95.12
co-1	52.41	60.57 57.27	56.67	79.46	82.45	83.93 87.24	78.89	87.18 91.55	84.2	78.74	89.99	90.67	87.12	<u>94.53</u> 02.40	94.78 95.61
co-2	52.96	57.37	<u>60.53</u>	80.03	77.41	<u>87.24</u>	78.40	81.55	<u>88.84</u>	77.85	89.28	<u>92.23</u>	87.19	93.49	<u>95.61</u>

Summary OOD testing results

Relative Degrade

 the percentage of accuracy decrease when the model is tested with domain that differs with training

$$RD = \frac{Acc_{iid} - Acc_{ood}}{Acc_{iid}}$$

		Visual	Redund.	Dist.	Comp.
	FiLM	4.03	21.33	28.46	9.04
non-modular	FiLM mDETR	9.81	19.05	36.34	9.45
C	NSCL	15.57	0.92	37.44	15.40
modular ≺	NSVQA	17.48	1.72	20.92	11.44
	Prob NSVQA	12.88	0.84	13.72	7.00

Table. *Relative Degrade* of models. Smaller is better.

Finding-1: modular models are very robust on redundancy

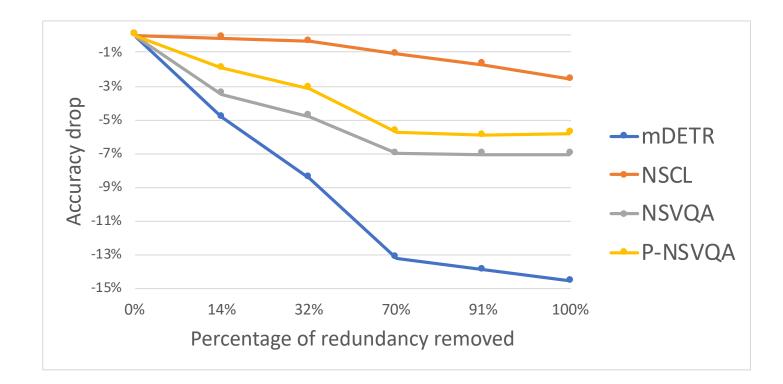
	Visual	Redund.	Dist.	Comp.
FiLM	4.03	21.33	28.46	9.04
mDETR	9.81	19.05	36.34	9.45
NSCL	15.57	0.92	37.44	15.40
NSVQA	17.48	1.72	20.92	11.44
Prob NSVQA	12.88	0.84	13.72	7.00

- Modular training is important
- Question component shouldn't compensate for visual understanding

Finding-2: P-NSVQA is the best on 3 out of 4 factors

	Visual	Redund.	Dist.	Comp.
FiLM	4.03	21.33	28.46	9.04
mDETR	9.81	19.05	36.34	9.45
NSCL	15.57	0.92	37.44	15.40
NSVQA	17.48	1.72	20.92	11.44
Prob NSVQA	12.88	0.84	13.72	7.00

• Modularity + Probabilistic execution -> best model

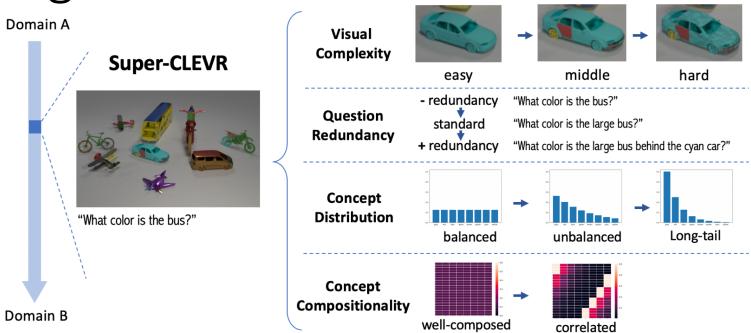

Finding-3: non-modular methods win on visual complexity

	Visual	Redund.	Dist.	Comp.
FiLM	4.03	21.33	28.46	9.04
mDETR	9.81	19.05	36.34	9.45
NSCL	15.57	0.92	37.44	15.40
NSVQA	17.48	1.72	20.92	11.44
Prob NSVQA	12.88	0.84	13.72	7.00

- mDETR has a more powerful pretrained visual component
- Visual scene parser (MaskRCNN) in modular methods can be improved.

Will the findings generalize to real data?

We verify findings on question redundancy on the real GQA dataset



When the redundant operations are progressively removed, the performance drops of modular methods are smaller than nonmodular methods.

Take-home messages

Super-CLEVR dataset

- Analysis findings:
 - 1. Modular models are very robust on question redundancy.
 - 2. P-NSVQA is the best on 3 out of 4 factors.
 - 3. Non-modular methods win on visual complexity.
- Modularity and probabilistic execution are important; we need better visual modules.

Welcome to our session!

WED-PM-249 (Highlight)

Jun 21, 2023