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Motivation

Ø Goal: Make VidL pretraining more efficient, effective and accessible.

• Expensive to train 

Model V100-GPU days
ALL-in-one 448
LAVENDER 640
CLIP-ViP 984

• Complex architectures
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Video-language pretraining



A Recipe for Effective VidL Pretraining

• We start with image and text encoders trained 
on video-text pairs using a contrastive loss.

• We then progressively add more components 
while studying the importance of each 
component.

• Using our empirical insights, we then develop a 
step-by-step recipe for effective VidL 
pretraining.
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Our final recipe outperforms the original 
baseline by 23.2%

Our Recipe: VindLU
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VindLU achieves state-of-the-art results on 9 video-language benchmarks.

Experiments
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Text-to-Video Retrieval

Action Recognition

Video Question Answering

Check our code!



Details



Problem Statement

Video-and-Language (VidL) Pretraining

Finetuning 

Video Question Answering

Text-to-video Retrieval

This scheme has been shown very effective for downstream VidL tasks.
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Step 0: Starting Ingredients

Model:
• Image Encoder: ViT-B/16.
• Text Encoder: BERT.

Datasets:
• Pretraining: WebVid-2M.
• Objective: VTC contrastive loss.
• Evaluation: Text-to-video retrieval on 

MSR-VTT, DiDeMo, ActivityNet.

Our Recipe: VindLU
The image transformer baseline achieves 50.2% 
accuracy.
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Step 1: Temporal Modeling

Our Recipe: VindLU

• Mean Pooling: the model averages independently computed frame-level scores.
• L-TA: adding 2 Transformer layers to an image encoder for temporal aggregation.
• TC: using 3D temporal convolutions for temporal modeling.
• TA: The divided space-time attention from TimeSformer inserted before spatial attention.
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Step 2: Multimodal Fusion Encoder
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Our Recipe: VindLU

The purpose of the multimodal fusion encoder is to fuse multimodal cues from video and language.
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Step 3: Pretraining Objectives

Our Recipe: VindLU

Video 
Encoder

Text
Encoder
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Cross Attention

MVM loss
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Step 3: Pretraining Objectives

Video 
Encoder

Text
Encoder

V2T-MF

VTM, MLM loss

VTC loss

Cross Attention

MVM loss

• Video-to-Text Contrastive (VTC)

Our Recipe: VindLU
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Step 3: Pretraining Objectives
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• Video-to-Text Contrastive (VTC)
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• Masked Video Modeling (MVM)

Our Recipe: VindLU
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Step 3: Pretraining Objectives
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Our Recipe: VindLU
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Step 3: Pretraining Objectives
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• Masked Language Modeling (MLM)

Our Recipe: VindLU
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Step 3: Pretraining Objectives
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Our Recipe: VindLU

• VTC: contrastive video-text loss 
objective.

• VTM: non-contrastive video-text 
matching classification objective attached 
to multimodal encoder.

• MLM: masked word token prediction 
loss.

• MVM: masked video token prediction 
loss.
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Step 4: Pretraining Data

Training Jointly on images and videos is 
beneficial.

Pretraining on 4 frames is sufficient and 
provides large reduction in the computational 
cost.

Multi-stage pretraining is not necessary.

Our Recipe: VindLU
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Step 5: Finetuning and inference

Finetuning on 12 frames provides a good tradeoff 
between accuracy and cost.

• Finetuning • Inference

Inference with more frames yields slightly better 
results at larger computational cost.

Our Recipe: VindLU
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Step 6: Scaling Up

Scaling the corpus leads to 3.4% boost. Scaling the vision and text encoders lead to 3.0% 
and 1.0% boost respectively.

Our Recipe: VindLU
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Our final recipe outperforms the original 
baseline by 23.2%

Our Recipe: VindLU
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Text-to-Video Retrieval

VindLU outperforms current SOTA by 7.8% on DiDeMo and 6.1% on ActivityNet

Experiments
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Text-to-Video Retrieval

VindLU outperforms SOTA by 5.7% and 8.6% on temporally-heavy SSv2-
label and SSv2-template datasets.

Experiments
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Video Question Answering

VindLU achieves competitive results across many VQA datasets.

Experiments
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Action Recognition

VindLU outperforms TimeSformer and OmniVL by 2.1% and 1.0% respectively.

Experiments
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• We demystify the importance of various components used in VidL 
framework design.

• We provide a recipe for building a highly performant VidL model.
• Our model achieves SOTA performance on 9 video-language benchmarks.

Conclusions
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Check our code!


