

Efficient Movie Scene Detection using State-Space Transformers

Md Mohaiminul Islam, Mahmudul Hasan, Kishan Shamsundar Athrey,

Tony Braskich, Gedas Bertasius

Presentation Date: June 22, 2023 Tag: THU-AM-217

Summary

We propose an efficient model (TranS4mer) for long-range movie scene detection.

Applications:

- Understanding the storyline of the movie
- Content-driven video search
- Preview generation

Challenges

Short-Range Video Understanding

Action, object, etc.

Scene Detection

Both short-range and long-range understanding

Prior Works

Most works are CNN based which is inherently designed for short-range modeling.

[Rao et al. 2020]

Pre-extracted CNN features

Small receptive field

Transformers

Global operation: long-range dependencies

Frame 1	Frame 2	Frame 3	Frame 100				
14*14*100 = 19,600 tokens							
384 Million pair-wise comparison for self-attention operation							

Structured State-Space Model (S4 model)

Efficiently Modeling Long Sequences with Structured State Spaces, Gu et al., ICLR 2022

Long Range Language Modeling via Gated State Spaces, Mehta et al. 2022

Hierarchical Input Structure

- 1. Multiple frames taken from the same camera position constitute a shot.
- 2. Multiple shots capturing a semantically high-level event is a scene.
- 3. A movie is composed of a collection of scenes.

TranS4mer Model

S4A Block

S4A Block:

- Intra-Shot Module: Self-Attention
- Inter-Shot Module: Gated State-Space

Experimental Setup

Datasets

- **1. MovieNet** a large-scale dataset containing 1100 movies with 1.6 million shots.
- 2. BBC contains 11 episodes from the BBC TV series Planet Earth.
- **3. OVSD** contains 21 short films with an average duration of 30 minutes.

Our Implemented Baselines

- **1. Transformer:** self-attention
- 2. TimeSformer: divided space-time attention
- **3.** Vanilla S4: vanilla S4 layers

Main Results on MovieNet

Method	AP (†)	mIoU (†)	AUC-ROC (†)	F1 (†)	Memory (GB) (\downarrow)	Samples/s (†)
Siamese [3]	35.80	39.60	-	-	-	_
MS-LSTM [25]	46.50	46.20	-	-	-	-
LGSS [38]	47.10	48.80	-	-	-	-
ViS4mer [34]	55.13	48.27	88.74	46.15		
ShotCoL [11]	53.40	-	-	-	34.28	0.96
BaSSL [35]	57.40	50.69	90.54	47.02	34.28	0.96
Transformer [16]	58.81	51.21	90.84	47.88	30.28	1.27
TimeSformer [6]	59.62	50.75	90.66	48.02	28.12	1.47
Vanilla S4 [18]	59.71	51.32	90.96	47.85	15.62	1.83
TranS4mer	60.78	51.91	91.89	48.36	10.13	2.57

- Our model achieves the state-of-the-art performance in all metrics.
- TranS4mer is 2.5x faster and 3x memory efficient than prior best method BaSSL.
- Trans4ormer is also 2x faster and 3x memory efficient than self-attention based baseline while achieving better performance than all other baselines.

Results on BBC and OVSD

Method	$AP(\uparrow)$	Method	$AP(\uparrow)$
BaSSL [35]	39.98	BaSSL [35]	28.68
Transformer [16]	41.86	Transformer [16]	33.12
TimeSformer [6]	42.23	TimeSformer [6]	33.87
Vanilla S4 [18]	42.56	Vanilla S4 [18]	34.21
TranS4mer	43.64	TranS4mer	36.04
(a) Performance on]	BBC [3].	(b) Performance on O	VSD [<mark>40</mark>].

TranS4mer outperforms the prior best method (BaSSL) by a large margin of 4.66% AP on BBC and 7.36% AP on OVSD datasets.

Ablation Studies

Intra-Shot	Inter-Shot	Ap (†)	S4 layers	$AP(\uparrow)$	S4 layers	$AP(\uparrow)$	S4 layers	$AP(\uparrow)$
1	X	57.80	1-6	58.31	every 2nd	59.82	S 4	59.71
X	1	55.59	7-12	58.82	every 4th	58.01	DS4	60.13
1	1	60.78	1-12	60.78	all	60.78	GS4	60.78
(a) Tr	anS4mer module	es.	(b) S4 in differ	ent layers.	(c) S4 in every	k^{th} layer.	(d) Different S	4 variants.

Intra-shot and inter-shot modules are complementary

TranS4mer with Gated S4 layers at every S4A block yields the best performance.

Temporal Extent Ablation

(a) **Performance** \uparrow TranS4mer achieves much better performance for longer videos.

Generalization to other Tasks

Long Movie Clip Classification: TranS4mer achieves best performance in 5 out of 7 movie clip classification tasks in LVU benchmark.

Method	Relation	Speak	Scene	Director	Genre	Writer	Year
ObjTrans. [48]	53.10	39.40	56.90	51.20	54.60	34.50	39.10
ViS4mer [34]	57.14	40.79	67.44	62.61	54.71	48.80	44.75
TranS4mer 59.52 39.21 70.93 63.86 55.85 46.93 45						45.45	
(a) Performance on LVU [48]							

Procedural Activity Classification: it performs best on the Breakfast and second-best on the COIN datasets, while using significantly less pretraining data.

Model	#Data(↓)	Acc. (\uparrow)	Model	#Data(↓)	Acc.(†)
GHRM [51]	306K	75.50	TSN [44]	306K	73.40
Dist.Sup. [31]	136M	<u>89.90</u>	Dist.Sup. [31]	136M	90.00
ViS4mer [34]	495K	88.17	ViS4mer [34]	495K	88.41
TranS4mer	495K	90.27	TranS4mer	495K	89.23
(b) Performan	ce on Breat	kfast [<mark>30</mark>]	(c) Performan	ice on CO	IN [43]

Thank You