

# VILA: Learning Image Aesthetics from User Comments with Vision-Language Pretraining

Junjie Ke, Keren Ye, Jiahui Yu, Yonghui Wu, Peyman Milanfar, Feng Yang Google Research

WED-AM-173

# VILA: VIsion Language Aesthetics Learning Framework

- Pretrain an image aesthetic model with noisy image-comment pairs
- Efficiently adapt the model for downstream IAA tasks
  - Tunes only 0.1% params



#### Motivation: Score-based IAA is Limited

- Image Aesthetic Assessment (IAA) methods are based on human ratings, but a single score does not capture the diverse aesthetic factors
  - E.g. composition, color, style, high-level semantics







4.70

5.67

6.66

# Motivation: User Comments Provide Rich Aesthetic Semantics

Image









"there's a bit too much of the frame, and therefore not enough of the background here, imo"

"simple and nice composition, i like it" "the idea is good here but the photo is too blurry."

#### VILA: Pretrain + Adapting



#### **VILA-P**: Pretraining using Image-Comment Pairs

- 1. General pretraining with a filtered 650M subset of LAION-5B-EN
- 2. **Aesthetic pretraining** with 250K Image-Comment pairs from AVA-Captions, which is crawled from a professional photograph sharing website



(1) VILA-P: Vision-Language Aesthetics Pretraining

• SOTA on image aesthetics captioning over AVA-Captions

| Method                              | BLEU-1                | BLEU-2         | BLEU-3         | BLEU-4         | ROUGE                 | CIDEr          |
|-------------------------------------|-----------------------|----------------|----------------|----------------|-----------------------|----------------|
| CWS [11]<br>Yeo <i>et al</i> . [58] | <b>0.535</b><br>0.464 | 0.282<br>0.238 | 0.150<br>0.122 | 0.074<br>0.063 | 0.254<br><b>0.262</b> | 0.059<br>0.051 |
| VILA                                | 0.503                 | 0.288          | 0.170          | 0.113          | 0.262                 | 0.076          |

Table 5. Results on AVA-Captions dataset.



"pretty colors. the bright flowers on the
trees add interest to anything."

"cute kitty is the best pose for this picture."



"color, focus and saturation are good. the image seems a little dark."



"lovely shooting with excellent colour, great composition." Google



"maybe could have cropped a bit more on top of the birches."



"great perspective and colors in

this shot. love the beautiful sky ."

• ZSL for Image Aesthetic Assessment



Top-5 Retrieved Images

|                     | Prompts                                                                                                           |                                                                                                             |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
|                     | $oldsymbol{p}_g$                                                                                                  | $oldsymbol{p}_b$                                                                                            |  |
| Single Prompt       | "good image"                                                                                                      | "bad image"                                                                                                 |  |
| Ensemble of Prompts | "good image"<br>"good lighting"<br>"good content"<br>"good background"<br>"good foreground"<br>"good composition" | "bad image"<br>"bad lighting"<br>"bad content"<br>"bad background"<br>"bad foreground"<br>"bad composition" |  |

$$r = \frac{e^{\boldsymbol{v}^{\top}\boldsymbol{p}_g}}{e^{\boldsymbol{v}^{\top}\boldsymbol{p}_g} + e^{\boldsymbol{v}^{\top}\boldsymbol{p}_g}}$$

- ZSL for Image Aesthetic Assessment
  - Surpasses many **supervised** baselines

| Method                       | SRCC  | PLCC  |  |  |  |
|------------------------------|-------|-------|--|--|--|
| Kong <i>et al</i> . [24]     | 0.558 | -     |  |  |  |
| NIMA (Inception-v2) [43]     | 0.612 | 0.636 |  |  |  |
| AFDC + SPP [2]               | 0.649 | 0.671 |  |  |  |
| MaxViT [46]                  | 0.708 | 0.745 |  |  |  |
| AMP [31]                     | 0.709 | -     |  |  |  |
| Zeng et al. (resnet101) [55] | 0.719 | 0.720 |  |  |  |
| MUSIQ [19]                   | 0.726 | 0.738 |  |  |  |
| Niu <i>et al.</i> [33]       | 0.734 | 0.740 |  |  |  |
| MLSP (Pool-3FC) [15]         | 0.756 | 0.757 |  |  |  |
| TANet [13]                   | 0.758 | 0.765 |  |  |  |
| $GAT_{\times 3}$ -GATP [12]  | 0.762 | 0.764 |  |  |  |
| Zero-shot Learning           |       |       |  |  |  |
| VILA-P (single prompt)       | 0.605 | 0.617 |  |  |  |
| VILA-P (ensemble prompts)    | 0.657 | 0.663 |  |  |  |

Image Aesthetic Assessment on AVA

• ZSL for Style Classification

| Method                                 | mAP (%) |
|----------------------------------------|---------|
| Murray et al. [36]                     | 53.9    |
| Karayev et al. [19]                    | 58.1    |
| Lu <i>et al.</i> [32]                  | 64.1    |
| MNet [46]                              | 65.5    |
| Sal-RGB [10]                           | 71.8    |
| Zero-shot Learning                     |         |
| General Pretraining (single prompt)    | 29.3    |
| General Pretraining (ensemble prompts) | 32.6    |
| VILA-P (single prompt)                 | 62.3    |
| VILA-P (ensemble prompts)              | 69.0    |

Table 4. Results on AVA-Style dataset. We gray out supervised baselines as they are not directly comparable to our unsupervised model which is not exposed to the training labels.



Top-5 Retrieved Images

#### VILA-R: Rank-based Adapter for IAA

- Inspired from ZSL setting, using text prompts to score images
  - Use the frozen text embedding of "good image" as an anchor to score images
  - Adjust image representation (w/ a learnable residual projection) to optimize the relative ranking between two images
- Tunes only **0.1%** of the total parameters



$$\begin{split} \tilde{\boldsymbol{v}} &= \operatorname{normalize}(\boldsymbol{v}^{\top}\boldsymbol{H} + \boldsymbol{v}), \\ r &= \tilde{\boldsymbol{v}}^{\top}\boldsymbol{w}_{p} \\ \mathcal{L}_{\text{RA}} &= \frac{1}{P}\sum_{i,j,i \neq j, l_{i} > l_{j}} \max\left(0, m - \tilde{\boldsymbol{v}}_{i}^{\top}\boldsymbol{w}_{p} + \tilde{\boldsymbol{v}}_{j}^{\top}\boldsymbol{w}_{p}\right) \end{split}$$

Google

• State-of-the-art performance on image aesthetics assessment over AVA

| Method                       | SRCC  | PLCC  |  |  |
|------------------------------|-------|-------|--|--|
| Kong <i>et al.</i> [24]      | 0.558 | -     |  |  |
| NIMA (Inception-v2) [43]     | 0.612 | 0.636 |  |  |
| AFDC + SPP [2]               | 0.649 | 0.671 |  |  |
| MaxViT [46]                  | 0.708 | 0.745 |  |  |
| AMP [31]                     | 0.709 | -     |  |  |
| Zeng et al. (resnet101) [55] | 0.719 | 0.720 |  |  |
| MUSIQ [19]                   | 0.726 | 0.738 |  |  |
| Niu <i>et al.</i> [33]       | 0.734 | 0.740 |  |  |
| MLSP (Pool-3FC) [15]         | 0.756 | 0.757 |  |  |
| TANet [13]                   | 0.758 | 0.765 |  |  |
| $GAT_{\times 3}$ -GATP [12]  | 0.762 | 0.764 |  |  |
| Zero-shot Learning           |       |       |  |  |
| VILA-P (single prompt)       | 0.605 | 0.617 |  |  |
| VILA-P (ensemble prompts)    | 0.657 | 0.663 |  |  |
| VILA-R                       | 0.774 | 0.774 |  |  |

#### Ablation: Necessity of Aesthetic Pretraining

- Aesthetic related information is **under-represented** in general image-text pairs from the Web
- Learning on noisy image-comment pairs from photo sharing website captures the **rich aesthetic semantics**

|                       | ZSL Ens. Prompts |       |       |
|-----------------------|------------------|-------|-------|
| General Pretraining   | 1                |       | 1     |
| Aesthetic Pretraining |                  | 1     | 1     |
| SRCC                  | 0.228            | 0.265 | 0.657 |
| PLCC                  | 0.228            | 0.276 | 0.663 |

ZSL performance on AVA Image Aesthetic Assessment

|                       | ZSL Single Prompt |      | ZSL Ens. Prompt |              |
|-----------------------|-------------------|------|-----------------|--------------|
| General Pretraining   | 1                 | 1    | 1               | 1            |
| Aesthetic Pretraining |                   | 1    |                 | $\checkmark$ |
| mAP                   | 29.3              | 62.3 | 32.6            | 69.0         |

#### ZSL performance on AVA-Style classification

#### Ablation: Effectiveness of the Rank-based Adapter

- Using text anchor is better: it leverages the rich textual aesthetic information from pretraining
- Learning a residual is better: we only need to slightly adjust the image embedding
- Finetune can further improve performance, but disturbs the generic pretrained weights
  - E.g. AVA-Style mAP drops from 69% to 26%

| Method                        | SRCC         | PLCC         |
|-------------------------------|--------------|--------------|
| VILA-P w/ L2 Loss             | 0.757        | 0.756        |
| VILA-P w/ EMD Loss [43]       | 0.759        | 0.759        |
| VILA-R w/o Text Anchor        | 0.763        | 0.764        |
| VILA-R w/o Residual           | 0.766        | 0.766        |
| VILA-R (Ours)                 | <b>0.774</b> | <b>0.774</b> |
| VILA-R Finetune Image Encoder | 0.780        | 0.780        |

Table 3. Ablation for the proposed rank-based adapter (Sec. 4) on AVA. First two groups use frozen pretrained image encoder.

#### Thanks!