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• Continual learning aims to learn on long task 
sequences without catastrophic forgetting.

• Replay-based methods address this by rehearsing 
on a small replay buffer, which requires careful 
sample selection.

• However, existing strategies are designed for 
single-round selection, neglecting the interactions
between selection steps.

• This work proposes to model the interactions with 
influence functions and address it via a regularized 
selection strategy.
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Introduction
Task description

• Continual learning[1] studies the training of models on long task sequences with potential 
data distribution shift.

• It is known for suffering from catastrophic forgetting[2], where the model abruptly forgets 
past knowledge after being updated on new tasks.

[1] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning. Morgan & Claypool Publishers, 2018.
[2] Michael McCloskey and Neal J Cohen. “Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem”. Psychology of Learning and Motivation, 1989, 24: 109–165.
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Introduction
Motivation

• Replay-based approaches mitigate forgetting by 
rehearsing on a small replay buffer, which requires 
careful sample selection.

• However, existing selection strategies primarily 
focus on refining single-round performance, 
neglecting the interactions between consecutive 
selection steps through the data flow.
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Introduction
Our contributions

• We investigate the interaction between consecutive 
selection steps in continual learning and identify a 
new class of second-order influences.

• A novel regularizer is proposed to mitigate second-
order influences, which also has clear connection to 
two other popular selection criteria.
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Method
Problem formulation

• We consider learning on a data stream 𝒵!:# = ⋃$%!# 𝒵$ with a small coreset 𝒞#. The sample 
selection goal is to preserve performance on 𝒞#&! ∪ 𝒵# by replaying on 𝒞#:

• In the following, we will first present a greedy solution based on influence functions[1,2], then 
showcase its limitations and propose our improved version.

[1] Frank R Hampel. “The Influence Curve and Its Role in Robust Estimation”. Journal of the American Statistical Association, 1974, 69(346): 383–393.
[2] Pang Wei Koh and Percy Liang. “Understanding Black-Box Predictions via Influence Functions”. In: ICML. 2017: 1885–1894.



Method
Influence-based selection

• To solve the bilevel optimization problem, we linearly approximate the effect of selecting 
each sample 𝑧 by perturbing its weight:

• A classic result[1] gives the influence of upweighting 𝑧 on the outer loss:

• It further yields an optimal solution that greedily select the most influential samples.

[1] R Dennis Cook and Sanford Weisberg. Residuals and Influence in Regression. New York: Chapman and Hall, 1982.



Method
Second-order influences

• This greedy selection strategy favors samples that are more similar to the existing ones.

• Due to second-order effects, it would result in a biased and less diversified coreset:
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Method
Second-order influences

• To model such an effect, we upweight two samples 𝑧 and 𝑧′ from consecutive selection steps. 
Upweighting the previous sample interferes with the subsequent selection:

• If 𝑧 and 𝑧′ are not jointly optimized in the next round:

• If 𝑧 and 𝑧′ are jointly optimized in the next round:



Method
Regularizing influences

• The total interference is a weighted sum of the two second-order influences:

• Its magnitude can be upper-bounded with the following regularizer:

• This regularizer is used in the final selection criterion: minimize



Method

[1] Bo Zhao, Konda Reddy Mopuri and Hakan Bilen.“Dataset Condensation with Gradient Matching”. In: ICLR. 2021.
[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud et al. “Gradient based Sample Selection for Online Continual Learning”. In: NeurIPS. 2019: 11817–11826.
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Interpreting the regularizer

• 𝜇 = 0 ⇒ gradient matching[1]:

• 𝜇 > 0, identical Hessian ⇒ diversity[2]:

• additional Hessian-related information



Experiments
• Comparison to state-of-the-art methods on Split CIFAR-10



Experiments
• Comparison to state-of-the-art methods on Split miniImageNet



Experiments
• Ablation studies of hyperparameter sensitivity and influence estimation accuracy



Thanks for listening
Code is available at https://github.com/feifeiobama/InfluenceCL

https://github.com/feifeiobama/InfluenceCL

