

G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity Priors

Marvin Eisenberger Aysim Toker Laura Leal-Taixé Daniel Cremers

Poster ID: THU-PM-206

Unsupervised Multi-Shape Matching

$\mathcal{X}^{(1)}$	0.0	3.0	1.2	3.1	3
$\mathcal{X}^{(2)}$	3.0	0.0	1.5	1.0	2
$\mathcal{X}^{(3)}$	1.2	1.5	0.0	2.3	1
$\mathcal{X}^{(4)}$	3.1	1.0	2.3	0.0	0
	$\mathcal{X}^{(1)}$	$\mathcal{X}^{(2)}$	$\mathcal{X}^{(3)}$	$\mathcal{X}^{(4)}$	- 0

Approach – Summary

For a given collection of shapes $\mathscr{X}^{(i)}$:

- 1. Predict putative, pairwise matches.
- 2. Define self-supervised affinity scores $w^{(i,j)}$.
- 3. Extract multi-shape correspondences $\Pi^{(i,j)}$.

Multi-Shape Matching

Multi-Shape Matching

Multi-Shape Matching

Approach

For a given collection of shapes:

- 1. Predict putative, pairwise matches.
- 2. Define self-supervised affinity scores.
- 3. Extract multi-shape correspondences.

1. Pairwise Matching

Sharp, Nicholas, et al. "Diffusionnet: Discretization agnostic learning on surfaces." ACM Transactions on Graphics (2022).
Eisenberger, Marvin, et al. "Deep shells: Unsupervised shape correspondence with optimal transport." NeurIPS (2020).

- 2. Affinity Weights
- \rightarrow We use the optimal transport matching distance:

$$E_{\text{match}}(\mathbf{F}, \mathbf{G}; \mathbf{\Pi}) := \sum_{i'=1}^{m} \sum_{j'=1}^{n} \mathbf{\Pi}_{i', j'} \|\mathbf{F}_{i'} - \mathbf{G}_{j'}\|_{2}^{2}$$

→ For each pair of shapes, define an affinity score:

$$w(\mathcal{X}^{(i)}, \mathcal{X}^{(j)}) := \min \left\{ E_{\text{match}}(\mathbf{\Pi}^{(i,j)}), E_{\text{match}}(\mathbf{\Pi}^{(j,i)}) \right\}.$$

2. Affinity Weights

3. Multi-Matching

→ Concatenate maps along shortest paths in the shape graph:

$$(i, s_1, \ldots, s_{M-1}, j) := \text{Dijkstra}(\mathcal{X}^{(i)}, \mathcal{X}^{(j)}; \mathcal{G})$$

 $\Pi_{\text{mult}}^{(i,j)} := \Pi^{(i,s_1)} \circ \Pi^{(s_1,s_2)} \circ \cdots \circ \Pi^{(s_{M-1},j)}.$

→ Enforce cycle-consistency during training

3. Multi-Matching

Architecture

Results: Topological changes

Results: Topological changes

Results: Inter-class matching

	l	SH'20 on		S	H'20 oi	TOSC	A			2
	SH'20	SMAL	Cat	Centaur	Dog	Horse	Human	Wolf		$\overline{\mathbf{A}}$
UFM [23]	39.8	32.9	<u>39.4</u>	39.2	37.5	34.1	49.6	4.4		-
SURFM [50]	53.4	37.7	54.0	57.7	57.9	57.0	65.8	55.3		
WFM [55]	31.4	20.2	20.6	21.9	16.7	22.4	38.1	5.7		
DiffNet [56]	40.5	18.2	14.2	8.3	13.6	9.1	24.5	2.6		1
DS [20]	35.0	10.8	7.6	9.1	5.5	2.5	10.1	2.1		
NM [19]	10.0	9.9	16.8	12.7	14.6	11.2	29.7	1.5		1
CZO [27]	21.7									
UDM [10]	52.6	25.5	40.7	34.3	43.6	43.0	45.8	34.3		
SyNoRiM [25]	10.4	5.7	12.8	11.6	10.6	7.1	28.2	2.0		
Ours w/o III	11.1	3.4	6.3	6.0	4.9	2.6	20.1	2.2		T
Ours	10.6	2.6	5.2	2.0	3.0	2.2	8.3	1.4	-6 -2 2 6	R

Conclusion

- → Introduce shape graphs, self-supervised affinity weights.
- → Predict multi-shape matches, enforce cycle consistency.
- → SOTA performance on several non-isometric benchmarks.

Poster ID: THU-PM-206