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Unsupervised Multi-Shape Matching
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Approach – Summary
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For a given collection of shapes 𝒳(𝒊):

1. Predict putative, pairwise matches.
2. Define self-supervised affinity scores 𝔀(𝒊,𝒋).
3. Extract multi-shape correspondences 𝚷(𝒊,𝒋).
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Multi-Shape Matching
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Multi-Shape Matching
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Multi-Shape Matching
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Approach
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For a given collection of shapes:

1. Predict putative, pairwise matches.

2. Define self-supervised affinity scores.

3. Extract multi-shape correspondences.



1. Pairwise Matching
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2. Affinity Weights
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➔ For each pair of shapes, define an affinity score:

➔ We use the optimal transport matching distance:



2. Affinity Weights
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3. Multi-Matching
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➔ Concatenate maps along shortest paths in the shape graph:

➔ Enforce cycle-consistency during training



3. Multi-Matching
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Architecture



Results: Topological changes
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Results: Topological changes



Results: Inter-class matching
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Conclusion
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➔ Introduce shape graphs, self-supervised affinity weights.

➔ Predict multi-shape matches, enforce cycle consistency.

➔ SOTA performance on several non-isometric benchmarks.
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