

Network-free, unsupervised semantic segmentation with synthetic images

Qianli Feng, Raghudeep Gadde, Wentong Liao, Eduard Ramon, Aleix Martinez Amazon

THU-PM-286

Network-free, unsupervised semantic segmentation with synthetic images Qianli Feng, Raghudeep Gadde, Wentong Liao, Eduard Ramon, Aleix Martinez

1. Introduction

Problem: Segmentation on synthetic images

Contribution: we made A key observation that, in StyleGAN2

Across style mixings, pixels categorized together, change together. (Long version) The correlation of a set of pixels belonging to the same semantic segment do not change when generating synthetic variants of an image using the style mixing approach

pixel

From this observation, we proposed a novel segmentation

method that

- 1. Does not need to train a new network
- 2. Unsupervised
- 3. Highly accurate

across

iects

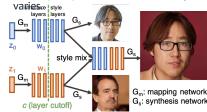
correlation

within object

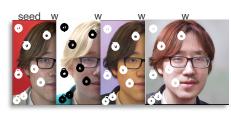
(b) Style summary tensor

2. Background - Style mixing

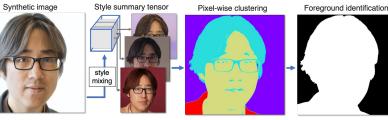
StyleGAN2 uses "style mixing" to create style variants of a synthetic image, where the shape is preserved, but colors/styles



3. Key observation

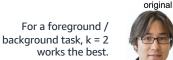


4. Method Design



- For a given input image, our algorithm has the following steps
 - 1. Generate N style variants
 - 2. Concatenate style variants, get NxCxHxW tensor
 - 3. Cluster HxW pixels into k clusters using flattened N-C dimensions
 - 4. Perform foreground identification for fg/bg task

Our method can be extended to object/instance segmentation with the help of a detector. Simply do the detection first, then run through steps 1-4.



5. Results - Quantitative

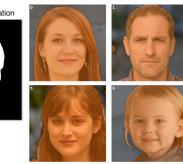
on								THURSDAY	
s			IOU		mIOU	Trimap IOU		Trimap mIOU	
	Methods	# manual gt	fg	bg	fg/bg	fg	bg	fg/bg	
nts	U-net [23]	1000	0.95	0.87	0.91	0.53	0.45	0.49	
	w/ DatasetGAN [28]	16	0.90	0.79	0.84	0.43	0.39	0.41	
J	w/L4F[1]	0	0.92	0.82	0.87	0.43	0.38	0.41	
	w/ SiS [21]	0	0.92	0.80	0.86	0.45	0.33	0.39	
	w/ Ours	0	0.92	0.82	0.87	0.42	0.43	0.42	

Table 3. Using synthetic data as training data for image segmentation. Trained on images generated from FFHQ model, test on CelebAcorrelation Mask-HQ (real data). The supervised segmentation method is DeepLabV3. All synthetic data performances are trained from scratch using synthetic data only. Trimap width is 3 pixels.

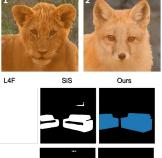
	LSUN-Hors	e	DeepRoom-livingroom					
Methods	IOU (horse-fg/bg)	mIOU	IOU (sofa-fg/bg)	mIOU	IOU (table-fg/bg)	mIOU		
L4F [1]	0.51/0.73	0.62	×	×	×	×		
SiS [21]	0.44/0.78	0.61	×	×	×	×		
Ours	0.64/0.89	0.77	0.88/0.97	0.93	0.14/0.96	0.55		

Table 2. Semantic segmentation performance on LSUN-horses, and DeepRoom-livingroom datasets, all with synthetic images and DeepLabV3 as psuedo ground-truth.×: method not easily extendable to segment the target class.

6. Results – Qualitative



7. Conclusion We proposed a novel segmentation method on synthetic images that 1. does not need to train a new network 2. Unsupervised 3. Highly accurate.



 Semantic segmentation on synthetic images

- Semantic segmentation on synthetic images
 - StyleGAN
 - Extend to more

- Semantic segmentation on synthetic images
 - StyleGAN
 - Extend to more
- Not a new problem
 - DatasetGAN, Label-4-Free, Segment-in-Style, furryGAN

Our contribution

Previous methods

- Use a masking branch
- Take generator intermediate activation as input

This is problematic because

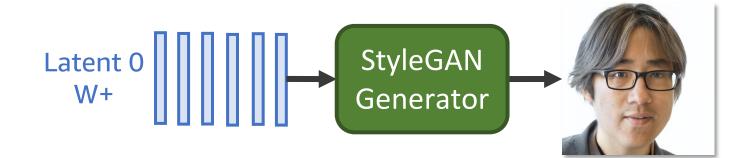
• Every new generator -> re-train masking branch

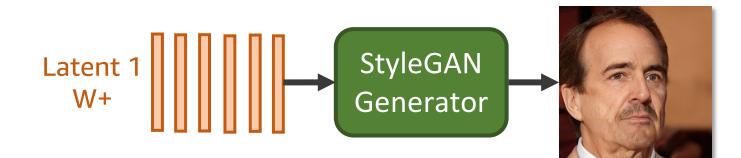
Our contribution

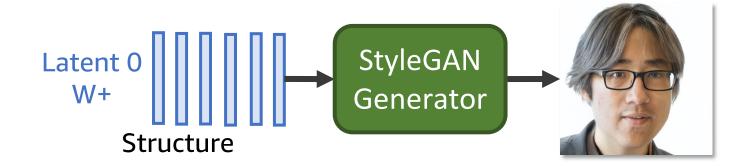
We proposed a simple, novel segmentation method that

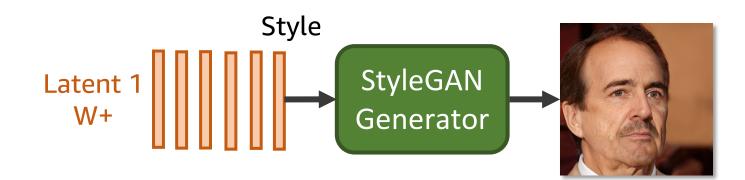
- 1. Does not need to train a new network
- 2. Unsupervised
- 3. Highly accurate

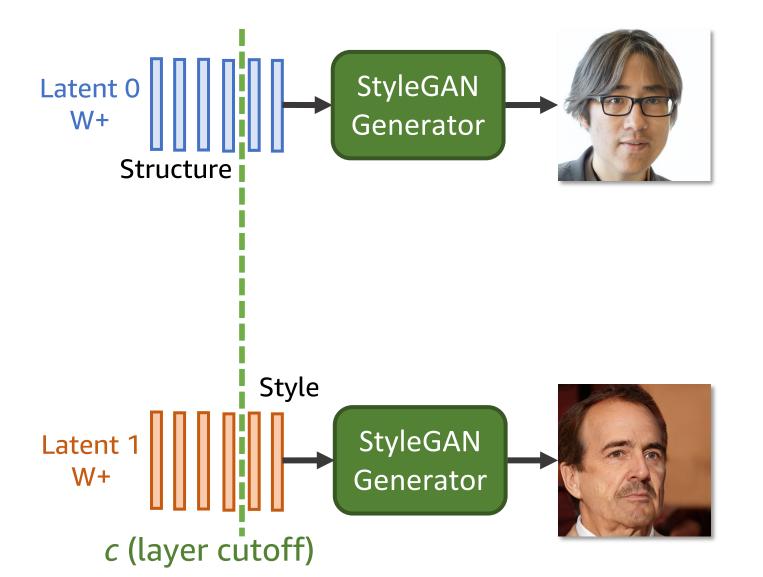
A key observation that, in StyleGAN2 Pixels that belong to the same semantics class, change their color together across different style mixings.

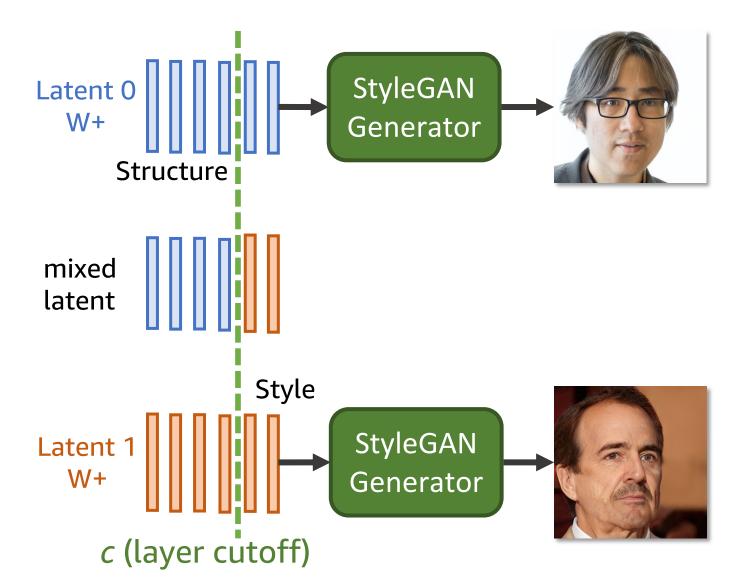


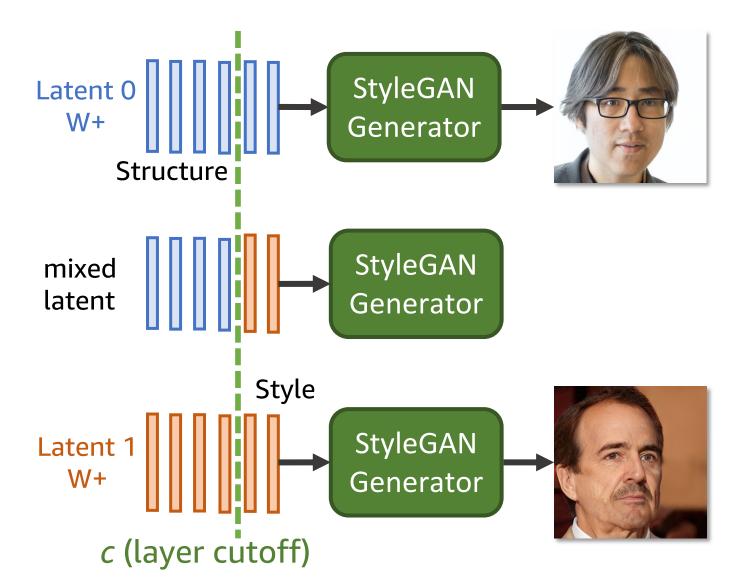


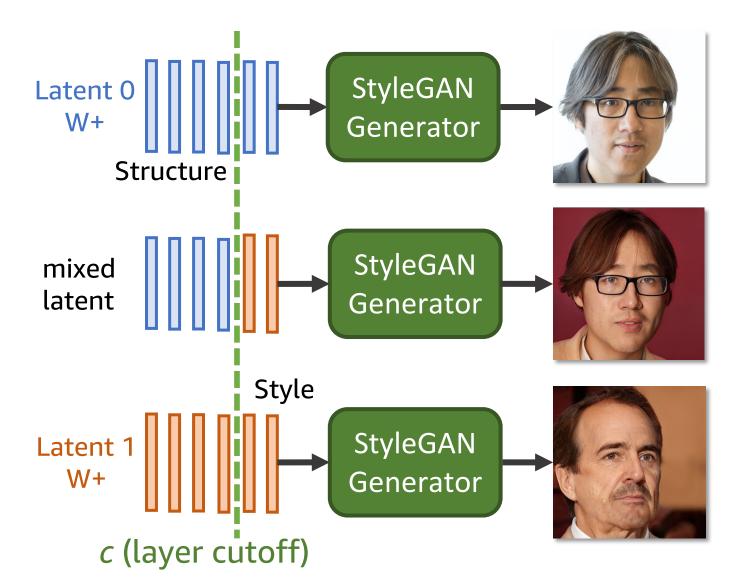




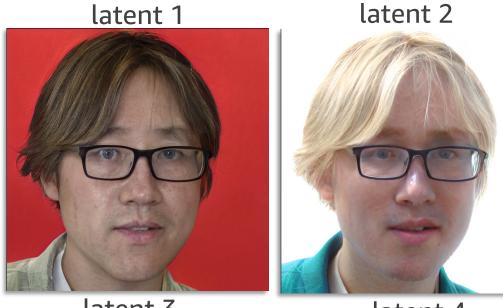






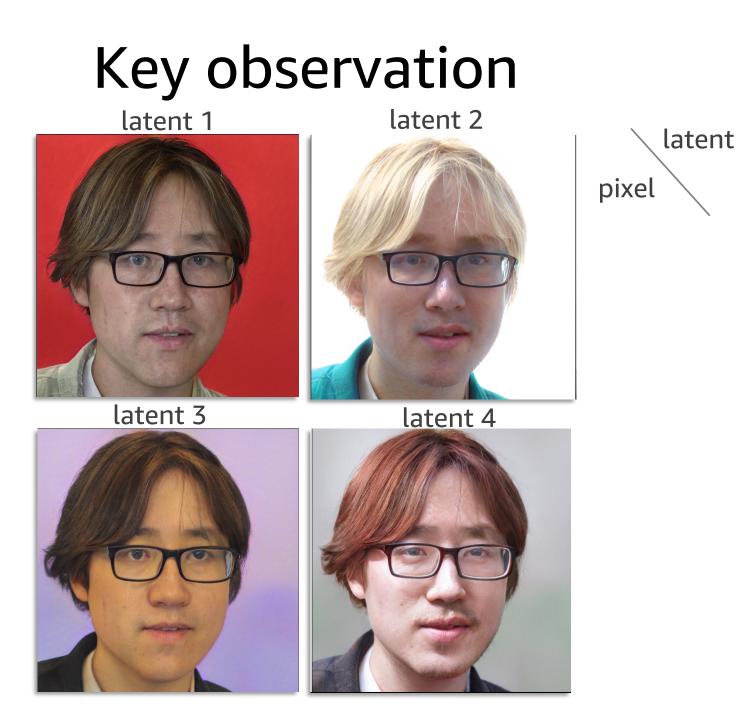


Key observation

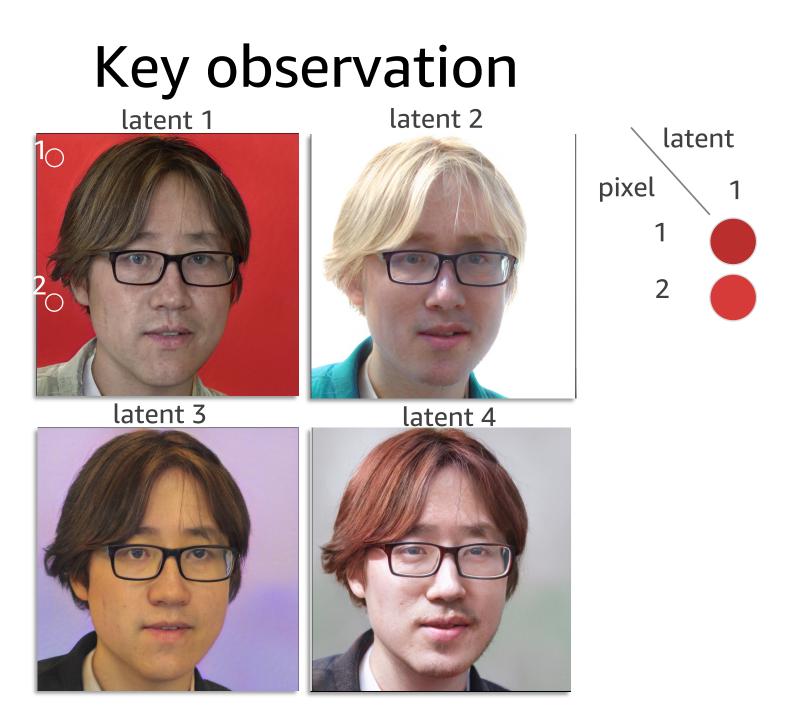


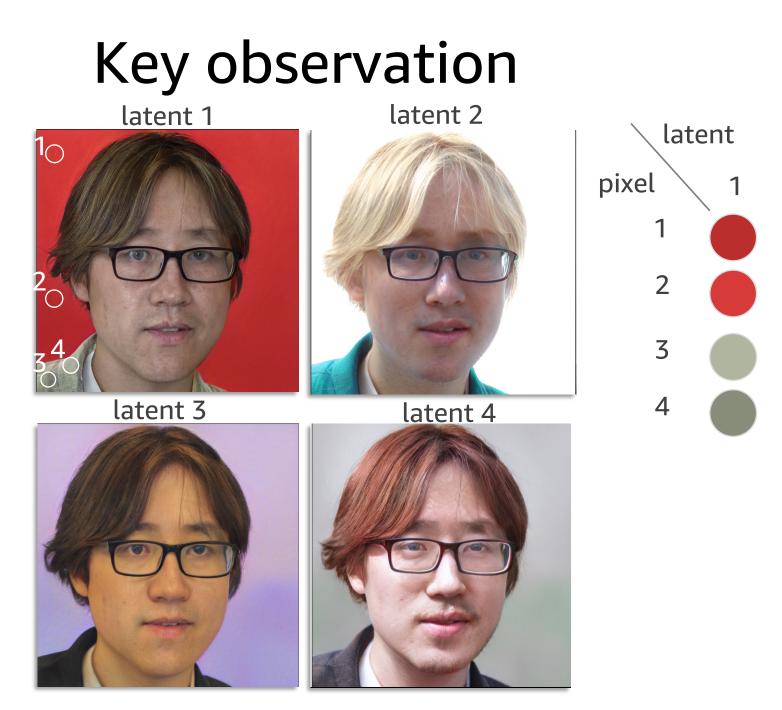
In StyleGAN2, pixels that belong to the same semantics class, change their color together across different style mixings.

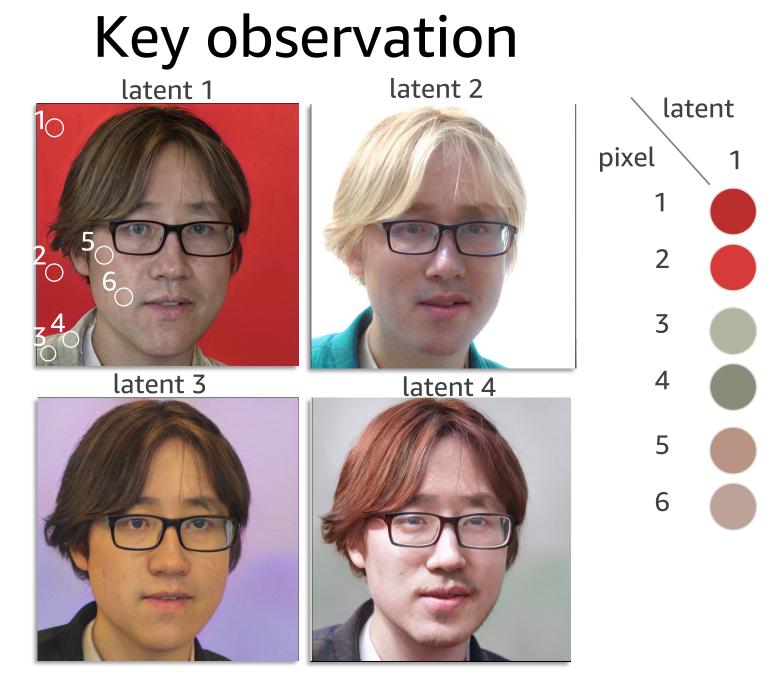
latent 3

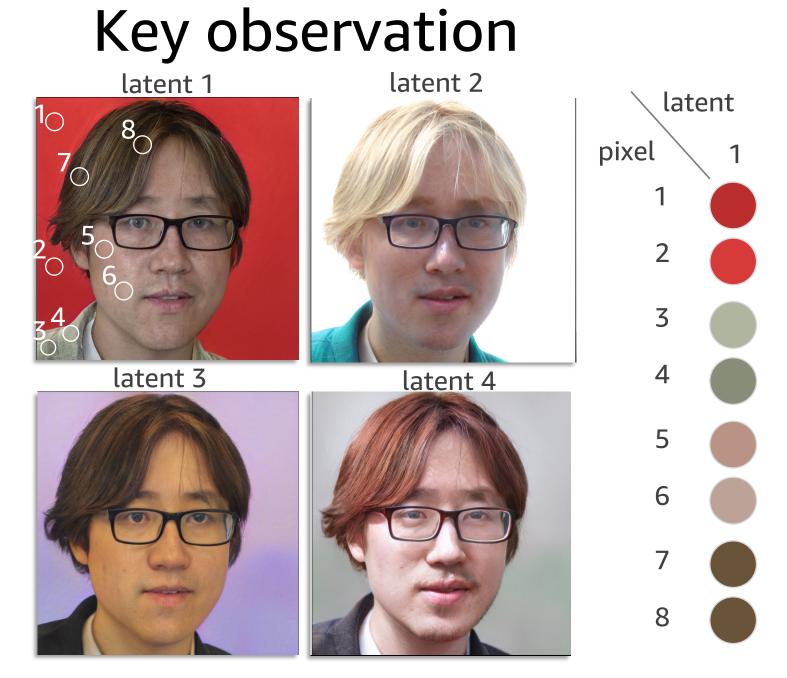


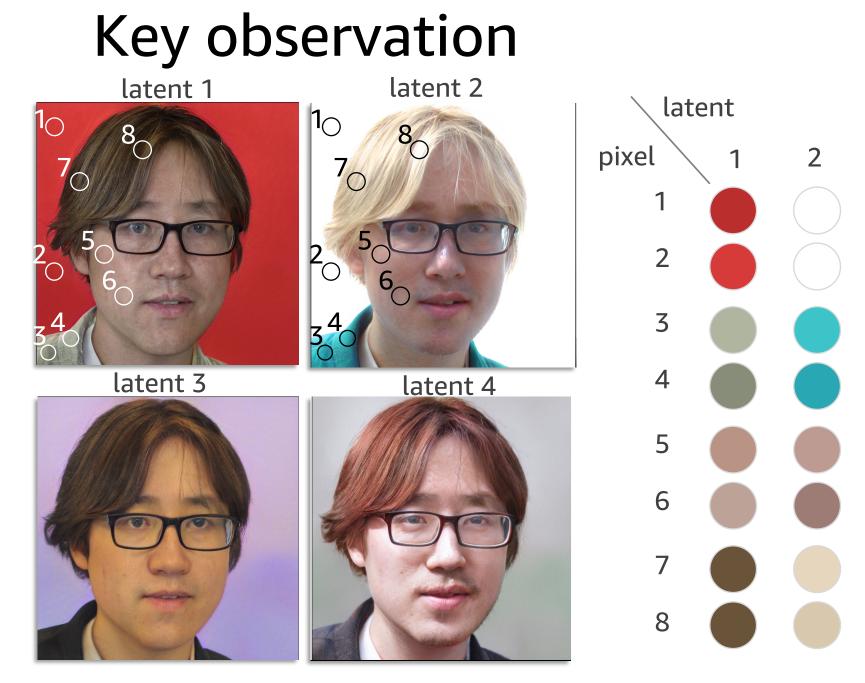
$\square))$

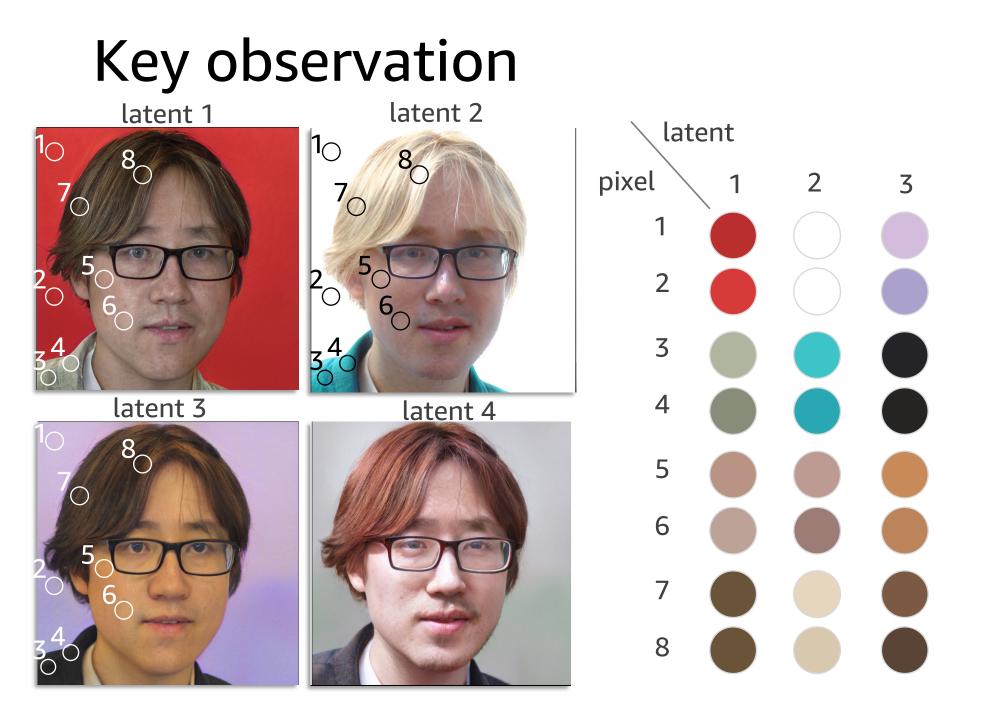


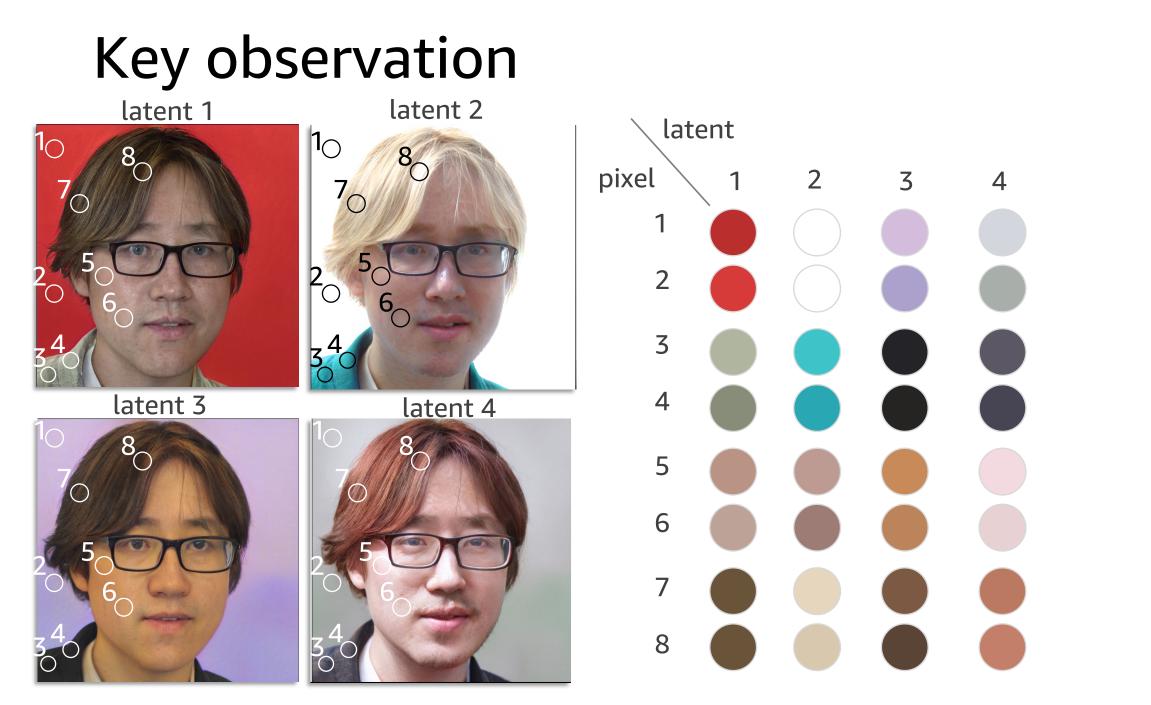


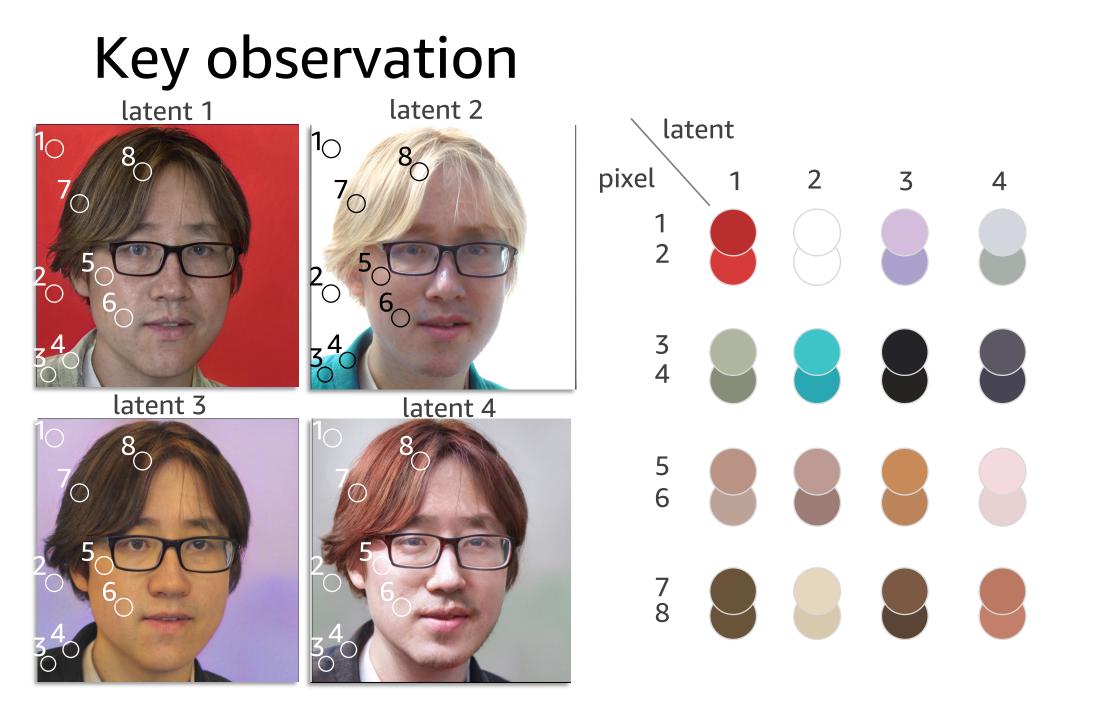


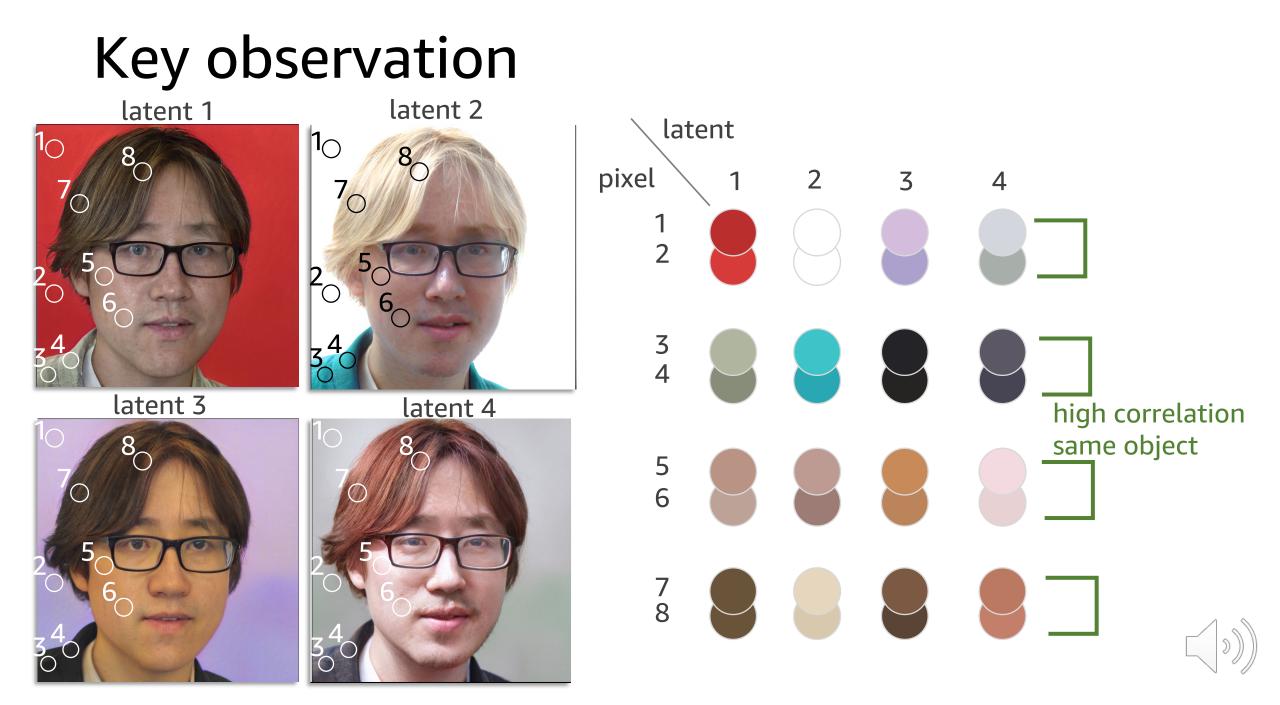


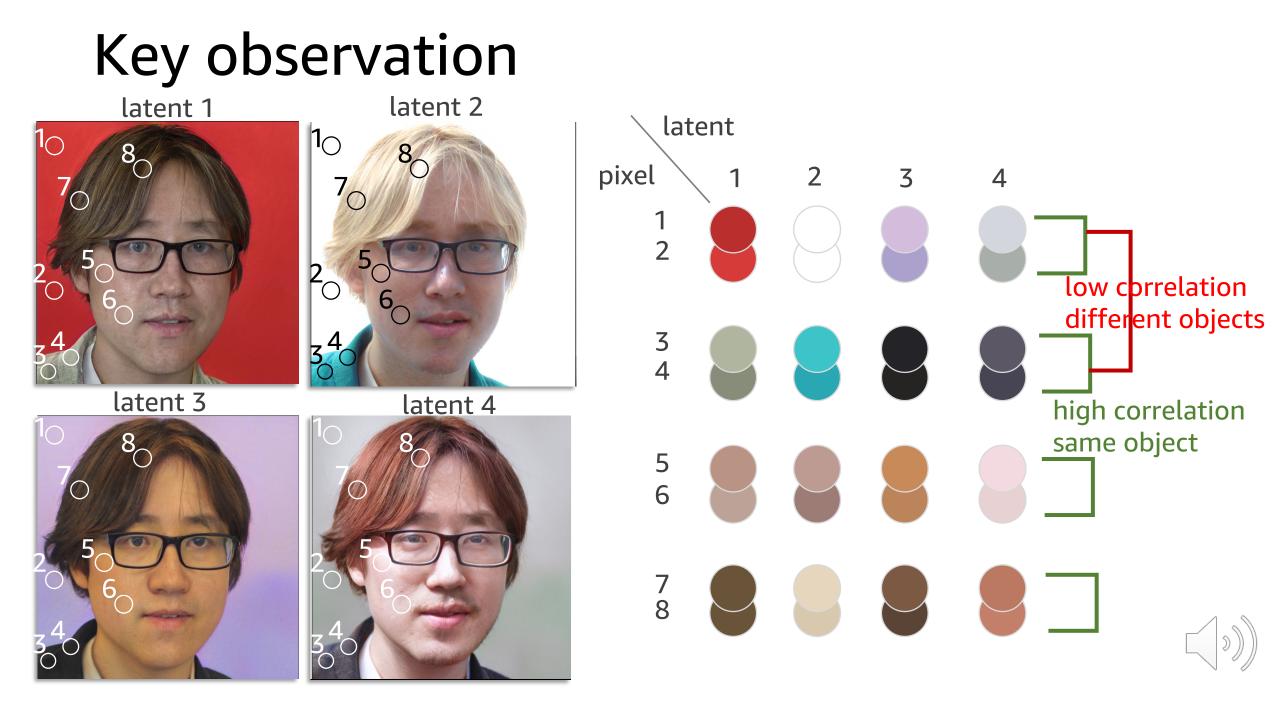




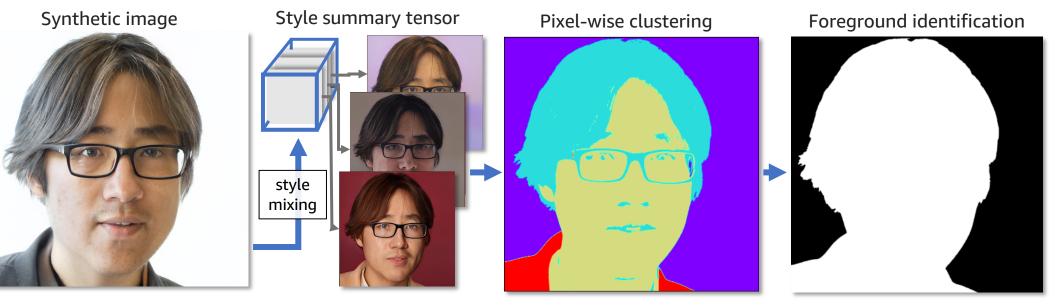








Our method



- For a given input image, our algorithm has the following steps
 - 1. Generate N style variants
 - 2. Concatenate style variants, get NxCxHxW tensor
 - 3. Cluster HxW pixels into k clusters using flattened N-C dimensions
 - 4. Perform foreground identification for fg/bg task
- Our method can be extended to object/instance segmentation with the help of a detector. Simply do the detection first, then run through steps 1-4.

Experiment / Results

- Experiment on
 - Fg/bg segmentation directly on synthetic images

				FFHQ		CelabAHQ-Mask	
Methods	Training data	supervision	additional network	IOU (fg/bg)	mIOU	IOU (fg/bg)	mIOU
DatasetGAN [28]	16	\checkmark	\checkmark	0.83/0.73	0.78	0.87/0.73	0.80
L4F [1]	10k	×	\checkmark	0.92/0.85	0.88	0.92/0.80	0.86
SiS [21]	50+15k	×	\checkmark	0.89/0.77	0.83	0.92/0.81	0.87
Ours	0	×	×	0.87/0.73	0.80	0.91/0.81	0.86

Table 1. Image segmentation performance on FFHQ (*i.e.*, on synthetic data) and CelebA-Mask-HQ (*i.e.*, on real data). IOU (fg/bg) is the IOU for foreground/background segmentation. mIOU is the average between the IOU (fg) and IOU (bg).

Experiment / Results

- Experiment on
 - Fg/bg segmentation directly on synthetic images
 - Instance segmentation on synthetic images

LSUN-Horse			DeepRoom-livingroom						
Methods	IOU (horse-fg/bg)	mIOU	IOU (sofa-fg/bg)	mIOU	IOU (table-fg/bg)	mIOU			
L4F [1]	0.51/0.73	0.62	×	×	×	Х			
SiS [21]	0.44/0.78	0.61	×	×	×	×			
Ours	0.64/0.89	0.77	0.88/0.97	0.93	0.14/0.96	0.55			

Table 2. Semantic segmentation performance on LSUN-horses, and DeepRoom-livingroom datasets, all with synthetic images and DeepLabV3 as psuedo ground-truth.×: method not easily extendable to segment the target class.

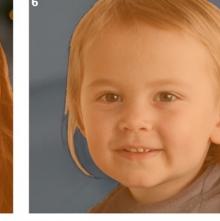
Experiment / Results

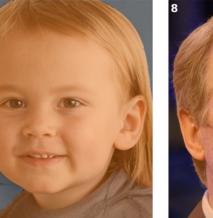
- Experiment on
 - Fg/bg segmentation directly on synthetic images
 - Instance segmentation on synthetic images
 - Generate synthetic segmentation data for downstream training

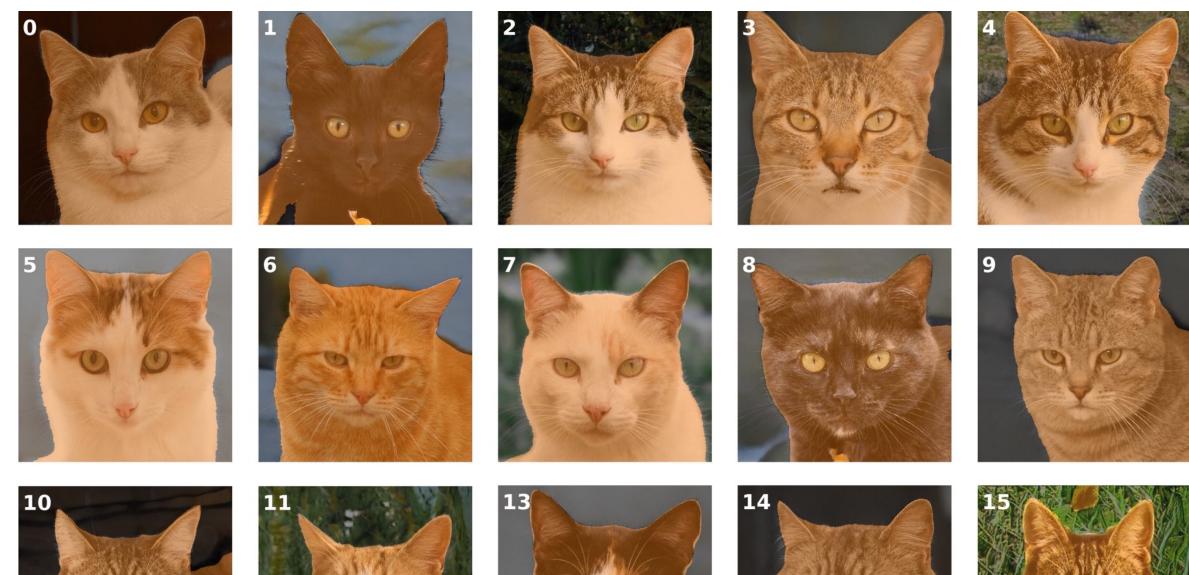
		IOU		mIOU	Trimap IOU		Trimap mIOU	
Methods	# manual gt	fg	bg	fg/bg	fg	bg	fg/bg	
U-net [23]	1000	0.95	0.87	0.91	0.53	0.45	0.49	
w/ DatasetGAN [28]	16	0.90	0.79	0.84	0.43	0.39	0.41	
w/ L4F [1]	0	0.92	0.82	0.87	0.43	0.38	0.41	
w/ SiS [21]	0	0.92	0.80	0.86	0.45	0.33	0.39	
w/ Ours	0	0.92	0.82	0.87	0.42	0.43	0.42	

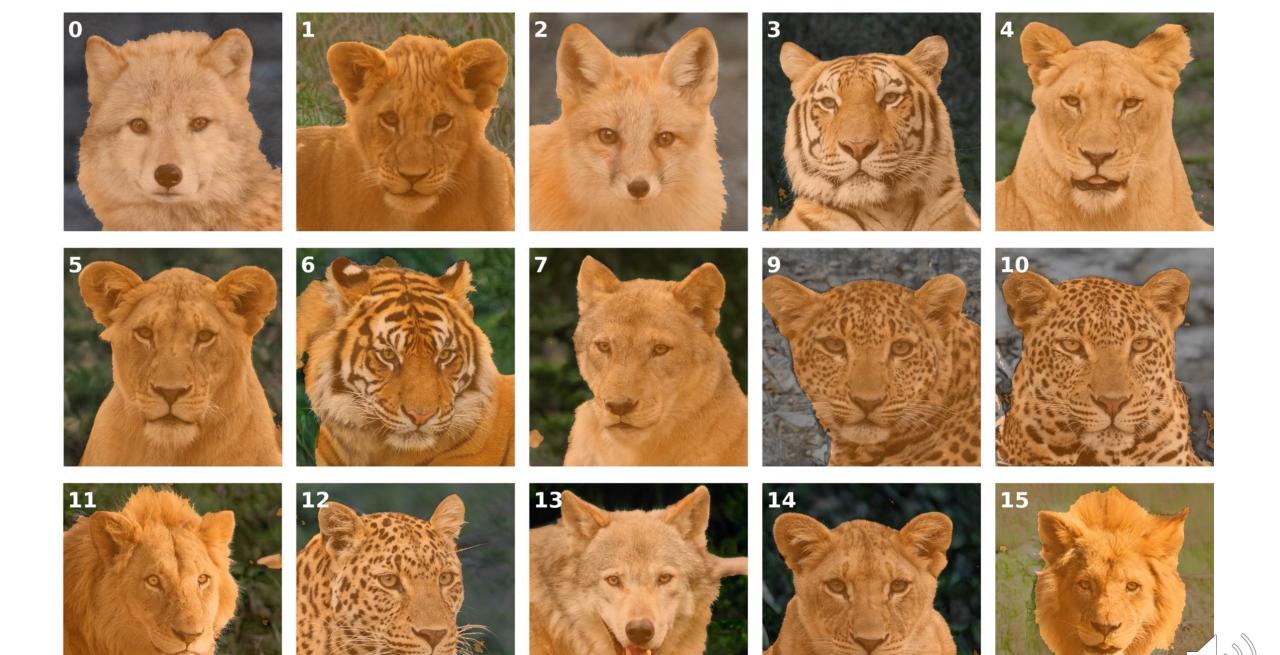
Table 3. Using synthetic data as training data for image segmentation. Trained on images generated from FFHQ model, test on Cel Mask-HQ (real data). The supervised segmentation method is DeepLabV3. All synthetic data performances are trained from scratch using synthetic data only. Trimap width is 3 pixels.

More qualitative results





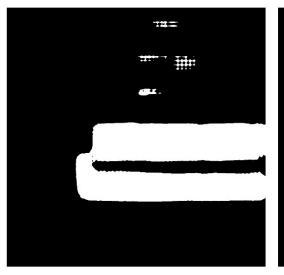


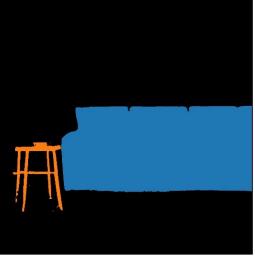


original image

L4F

SiS Ours





10)

Thanks! Please check out our paper

Network-free, unsupervised semantic segmentation with synthetic images

@THU-PM-286

