

VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud

Ziqin Wang¹, Bowen Cheng¹, Lichen Zhao¹, Dong Xu², Yang Tang^{3*}, Lu Sheng^{1*} ¹School of Software, Beihang University ²The University of Hong Kong ³East China University of Science and Technology

Tag: THU-PM-091

Code is available at https://github.com/wz7in/CVPR2023-VLSAT

The proposed VL-SAT

(a) Traditional Training & Inference Scheme(b) Our VL-SAT Training & Inference Scheme

Our Proposed Training Scheme : VL-SAT

- Constructing an **Oracle Model** that takes 2D input, Language input and 3D input as inputs.
- Optimizing the 3D model by Gradient Back-Propagation.
- Utilizing **multi-modal inputs** during training, but only uses 3D point clouds in inference.

2

• Task: 3D Scene Graph Prediction on 3DSSG Dataset.

- Task: 3D Scene Graph Prediction on 3DSSG Dataset.
- Challenge :
 - Limited semantics in point clouds compared to 2D images.
 - Long-tailed relation distribution.

Point Clouds

Images

- Task: 3D Scene Graph Prediction on 3DSSG Dataset.
- Challenge :
 - Limited semantics in point clouds compared to 2D images.
 - Long-tailed relation distribution.

- Task: 3D Scene Graph Prediction on 3DSSG Dataset.
- Challenge :
 - Limited semantics in point clouds compared to 2D images.
 - Long-tailed relation distribution.
- Our Method : A model-agnostic training scheme, utilizing Visual semantics along with Linguistic knowledge

Details of proposed training scheme

- Dataset: 3DSSG
- Evaluation metrics: A(Accuracy), mA(mean Accuracy)

Model	Object			Predicate					Triplet				
WIGGET	A@1	A@5	A@10	A@1	A@3	A@5	mA@1	mA@3	mA@5	A@50	A@100	mA@50	mA@100
SGPN [34]	48.28	72.94	82.74	91.32	98.09	99.15	32.01	55.22	69.44	87.55	90.66	41.52	51.92
SGG _{point} [45]	51.42	74.56	84.15	92.4	97.78	98.92	27.95	49.98	63.15	87.89	90.16	45.02	56.03
SGFN [36]	53.67	77.18	85.14	90.19	98.17	99.33	41.89	70.82	81.44	89.02	91.71	58.37	67.61
non-VL-SAT	54.79	77.62	85.84	89.59	97.63	99.08	41.99	70.88	81.67	88.96	91.37	59.58	67.75
VL-SAT (ours)	55.66	78.66	85.91	89.81	98.45	99.53	54.03	77.67	87.65	90.35	92.89	65.09	73.59
VL-SAT (oracle)	66.39	86.53	91.46	90.66	98.37	99.40	55.66	76.28	86.45	92.67	95.02	74.10	81.38

- Non-VL-SAT: The baseline 3D Model
- VL-SAT(ours): The 3D Model training with VL-SAT
- VL-SAT(oracle): The Oracle Model training with VL-SAT

	SGCls	PredCls
Model	R@20/50/100	R@20/50/100
with (Graph Constraints	
Co-Occurrence [47]	14.8/19.7/19.9	34.7/47.4/47.9
KERN [6]	20.3/22.4/22.7	46.8/55.7/56.5
SGPN [34]	27.0/28.8/29.0	51.9/58.0/58.5
Schemata [24]	27.4/29.2/29.4	48.7/58.2/59.1
Zhang <i>et al</i> . [47]	28.5/30.0/30.1	59.3/65.0/65.3
SGFN [36]	29.5/31.2/31.2	65.9/78.8/79.6
VL-SAT (ours)	32.0/33.5/33.7	67.8/79.9/80.8

without Graph Constraints

	1	
Co-Occurrence [47]	14.1/20.2/25.8	35.1/55.6/70.6
KERN [6]	20.8/24.7/27.6	48.3/64.8/77.2
SGPN [34]	28.2/32.6/35.3	54.5/70.1/82.4
Schemata [24]	28.8/33.5/36.3	49.6/67.1/80.2
Zhang <i>et al</i> . [47]	29.8/34.3/37.0	62.2/78.4/88.3
SGFN [36]	31.9/39.3/45.0	68.9/82.8/91.2
VL-SAT (ours)	33.8/41.3/47.0	70.5/85.0/92.5

	SGCls	PredCls
Model	mR@20/50/100	mR@20/50/100
Co-Occurrence [47]	8.8/12.7/12.9	33.8/47.4/47.9
KERN [6]	9.5/11.5/11.9	18.8/25.6/26.5
SGPN [34]	19.7/22.6/23.1	32.1/38.4/38.9
Schemata [24]	23.8/27.0/27.2	35.2/42.6/43.3
Zhang <i>et al</i> . [47]	24.4/28.6/28.8	56.6/63.5/63.8
SGFN [36]	20.5/23.1/23.1	46.1/54.8/55.1
VL-SAT(ours)	31.0/32.6/32.7	57.8/64.2/64.3

- Dataset: 3DSSG
- Evaluation metrics: R(Recall), mR(mean Recall)

SGCls & PredCls are two tasks defined in 2D Scene Graph Generation Task, which means whether we think about the object class during training / evaluating

Long Tail Evaluation

- Datasets: 3DSSG
- Evaluation metrics: A(Accuracy), mA(mean Accuracy)

			Pred	Triplet						
Model	Head		Body		Tail		Unseen		Seen	
	mA@3	mA@5	mA@3	mA@5	mA@3	mA@5	A@50	A@100	A@50	A@100
SGPN [34]	96.66	99.17	66.19	85.73	10.18	28.41	15.78	29.60	66.60	77.03
SGFN [36]	95.08	99.38	70.02	87.81	38.67	58.21	22.59	35.68	71.44	80.11
non-VL-SAT	95.32	99.01	71.88	88.64	40.01	58.33	21.99	35.44	71.52	80.34
VL-SAT (ours)	96.31	99.21	80.03	93.64	52.38	66.13	31.28	47.26	75.09	82.25

Our scheme improve the model ability on tail predicates and unseen triplets greatly.

Red edge: miss-classified edges from SGFN Green edge: edges corrected by our method

11

Qualitative results on the ScanNet

Ablation study & Discussion

Ablation Study

CI NC I	FC	TR	Ob	oject	Pred	icate	Triplet		
	ĽC		A@5	A@10	mA@3	mA@5	mA@50	mA@100	
				77.62	85.84	70.88	81.67	59.58	67.75
\checkmark				79.03	86.81	72.50	83.59	60.65	69.71
\checkmark	\checkmark			79.28	86.82	73.92	84.78	62.88	71.84
\checkmark	\checkmark	\checkmark		78.71	86.17	76.92	87.08	64.00	72.42
\checkmark	\checkmark	\checkmark	\checkmark	78.66	85.91	77.67	87.65	65.09	73.59

Different Cross-modal Collaboration Strategies

NC EC	FC	Ob	ject	Pred	icate	Triplet		
	ĽC	A@1	A@5	mA@1	mA@3	mA@50	mA@100	
CT	CT	55.78	77.58	51.64	74.13	60.37	72.66	
CT	CA	56.14	78.38	52.28	75.04	61.50	73.80	
CA	CT	56.00	77.68	52.14	73.54	63.92	73.10	
CA	CA	55.66	78.66	54.03	77.67	65.09	73.59	

Generalization Ability

	Ob	ject	Pred	icate	Triplet		
	A@1	A@5	mA@1	mA@3	mA@50	mA@100	
SGG _{point} [45]	51.42	74.56	27.95	49.98	45.02	56.03	
+VL-SAT	52.08	75.76	38.04	60.36	52.51	64.31	
SGFN [36]	53.67	77.18	41.89	70.82	58.37	67.61	
+VL-SAT	55.43	78.88	52.91	72.37	63.57	72.02	

All components are important to performance

CI means CLIP-initialized object classifier

NC means node-level collaboration

EC means edge-level collaboration

TR means triplet-level CLIP-based regularization

Cross-Attention works best in collaboration

NC means node-level collaboration.

EC means edgelevel collaboration.

CT means concatenation.

CA means cross-attention in our method.

VL-SAT is applicable to other base 3D models

Performance gains brought by our VL-SAT scheme with two reference 3DSSG prediction models.

Ablation study & Discussion

Comparison with Knowledge Distillation Scheme

Conclusion

- Visual-Linguistic Semantics Assisted Training greatly boosts 3D scene graph prediction.
- **State-of-the-art** performance on 3DSSG Dataset, especially good performance on Tail predicates and Zero-shot triplets.
- Strong Generalization ability to various 3D models.

