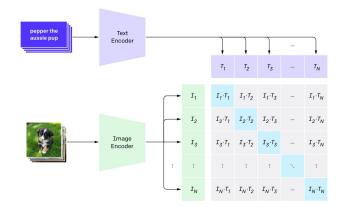
Fine-tuned CLIP Models are Efficient Video Learners CVPR-23

¹Hanoona Rasheed* ¹Muhammad Uzair Khattak* ¹Muhammad Maaz ^{1,2}Salman Khan ^{1,3}Fahad Shahbaz Khan ¹Mohamed Bin Zayed University of AI, ²Australian National University, ³Linköping University *Equal Contribution

Background

- Pretrained Vision-Language (V-L) models are open-vocabulary
- E.g: CLIP pretrained on 400 Million image-caption pairs
 - Zero-shot capability
 - Effectively transfer to downstream vision tasks
 - Generalizable



CLIP used for zero-shot classification (Radford et al., 2021)

Effective formulation of CLIP baseline for videos

Problem statement:

Similar to CLIP for images, can we come up with VideoCLIP based V-L model for videos?

Existing solutions:

- Video-text pretraining
 - Expensive: Curating large scale video-text pairs
 - High compute requirement

• Adapt already available image-text models for videos

Common Methods to Adapt CLIP for Videos

- Introduce additional modules for temporal modeling
- e.g. Video decoders, temporal attention, inter-frame communication blocks
- Recent works e.g. XCLIP and ActionCLIP

It is Challenging

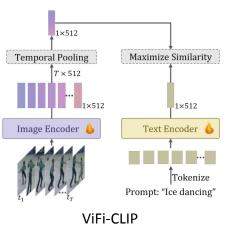
- Additional components hurts the inherent generalization ability of CLIP
- Increase compute requirements during training and inference

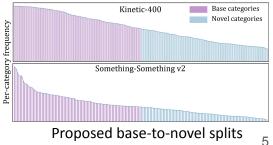
Effective formulation of CLIP baseline for videos

A simple Video Fine-tuned CLIP (ViFi-CLIP) is sufficient to bridge the domain gap

Our contributions:

- We formulated a simple baseline, Video Fine-tuned CLIP (ViFi-CLIP)
 - Adapts image-based CLIP for video tasks 0
- Introduce base-to-novel generalization benchmark for video-domain
- Propose a two-stage 'bridge and prompt' approach for adapting CLIP

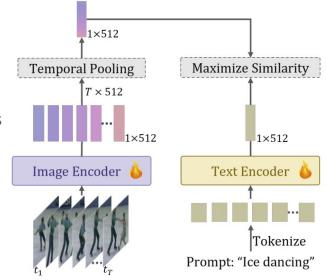




ViFi-CLIP

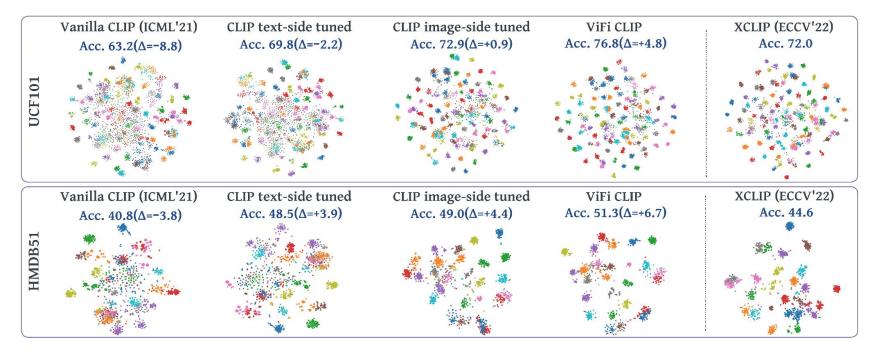
• Our simple baseline ViFi-CLIP for adapting CLIP to videos

- Fine-tune CLIP on videos with minimal design changes
- No modality specific components that may degrade the generalization of CLIP
- Frame-level late feature aggregation via temporal pooling allows the exchange of temporal cues



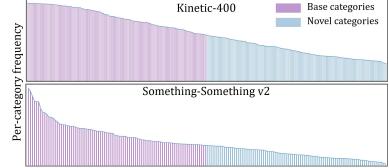
ViFi-CLIP

• ViFi-CLIP can learn suitable video representations with minimal design changes



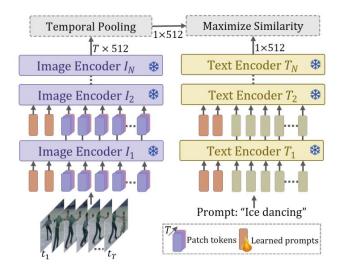
Base to Novel generalization benchmark

- Introduce a base-to-novel generalization benchmark
 - Evaluating model's generalization ability within a dataset
 - First open-vocabulary video recognition protocol
 - Splits datasets into base and novel classes



Bridge and Prompt approach in low-data regimes

- We explore a two-stage approach, 'bridge and prompt'
 - Fine-tuning on a video dataset to bridge the modality gap.
 - Model is then adapted to downstream tasks for better generalization via prompting.



Experiments

We conduct experiments on four different benchmark settings

Generalization benchmarks:

- Zero-shot
 - Pretrain models on K-400
 - Evaluate models on: UCF101, HMDB-51, K-600
- Base-to-novel generalization
 - Train models on base classes
 - Evaluate models on base and novel classes

Supervised learning benchmarks:

- Few-shot
- Fully-supervised tasks

ViFi-CLIP Generalizes Well

Zero-shot setting

- Modality gap bridged by adapting CLIP for video domain (K-400 pretraining)
- Without loss in generalization ability towards cross datasets

Method	HMDB-51	UCF-101	Method	K600 (Top-1)	K600 (Top-5)			
Uni-modal zero-sh	ot action recogni	tion models	Uni-modal zero-	shot action recogn	nition models			
ASR [41]	21.8 ± 0.9	24.4 ± 1.0	SJE [1]	22.3 ± 0.6	48.2 ± 0.4			
ZSECOC [32]	22.6 ± 1.2	15.1 ± 1.7	ESZSL [36]	22.9 ± 1.2	48.3 ± 0.8			
UR [50]	24.4 ± 1.6	17.5 ± 1.6	DEM [44]	23.6 ± 0.7	49.5 ± 0.4			
E2E [5]	32.7	48	GCN [13]	22.3 ± 0.6	49.7 ± 0.6			
ER-ZSAR [8]	35.3 ± 4.6	51.8 ± 2.9	ERZSAR [8]	42.1 ± 1.4	73.1 ± 0.3			
Adapting pre-trained image VL models			Adapting pre-trained image VL models					
Vanilla CLIP [33]	40.8 ± 0.3	63.2 ± 0.2	Vanilla CLIP [33]	59.8 ± 0.3	83.5 ± 0.2			
ActionCLIP [40]	40.8 ± 5.4	58.3 ± 3.4	ActionCLIP [40]	66.7 ± 1.1	91.6 ± 0.3			
XCLIP [30]	44.6 ± 5.2	72.0 ± 2.3	XCLIP [30]	65.2 ± 0.4	86.1 ± 0.8			
A5 [17]	44.3 ± 2.2	69.3 ± 4.2	A5 [17]	55.8 ± 0.7	81.4 ± 0.3			
Tuning pre-tr	ained image VL	models	Tuning pre-	trained image VL	models			
CLIP image-FT	49.0 ± 0.3	72.9 ± 0.8	CLIP image-FT	62.4 ± 1.0	85.8 ±0.5			
CLIP text-FT	48.5 ± 0.1	69.8 ± 1.1	CLIP text-FT	68.5 ± 1.2	89.6 ±0.3			
ViFi-CLIP	$\textbf{51.3}\pm0.6$	76.8 ± 0.7	ViFi-CLIP	71.2 ± 1.0	92.2 ±0.3			
	+6.7	+4.8		+4.5	+0.6			

ViFi-CLIP Generalizes Well

Base-to-novel generalization

- We compare ViFi-CLIP with
 - Methods that explicitly adapt CLIP for videos

		K-400		ŀ	HMDB-5	1		UCF-101			SSv2	
Method	Base	Novel	HM	Base	Novel	HM	Base	Novel	HM	Base	Novel	HM
			Adapti	ng pre-	trained in	mage V	L mode	els				
Vanilla CLIP [33]	62.3	53.4	57.5	53.3	46.8	49.8	78.5	63.6	70.3	4.9	5.3	5.1
ActionCLIP [40]	61.0	46.2	52.6	69.1	37.3	48.5	90.1	58.1	70.7	13.3	10.1	11.5
XCLIP [30]	74.1	56.4	64.0	69.4	45.5	55.0	89.9	58.9	71.2	8.5	6.6	7.4
A5 [17]	69.7	37.6	48.8	46.2	16.0	23.8	90.5	40.4	55.8	8.3	5.3	6.4
			Tunir	ig pre-ti	rained in	nage VI	_ model	S				
CLIP image-FT	72.9	58.0	64.6	62.6	47.5	54.0	86.4	65.3	74.4	9.2	8.5	8.8
CLIP text-FT	73.4	59.7	65.8	70.0	51.2	59.1	90.9	67.4	77.4	12.4	9.5	10.8
ViFi-CLIP	76.4	61.1	67.9	73.8	53.3	61.9	92.9	67.7	78.3	16.2	12.1	13.9
	+2.3	+4.7	+3.9	+4.4	+6.5	+6.9	+2.4	+4.1	+7.1	+2.9	+2.0	+2.4

ViFi-CLIP directly adapts to supervised video tasks

Few-shot learning

• ViFi-CLIP supasses other approaches that explicitly adapts CLIP for videos

Model	HMDB-51				UCF-101				SSv2			
Woder	K= 2	<i>K</i> =4	<i>K</i> =8	K=16	K=2	<i>K</i> =4	<i>K</i> =8	K=16	K=2	<i>K</i> =4	K=8	K=16
			Adap	oting pre-	trained	image V	L mod	els				
Vanilla CLIP [33]	41.9	41.9	41.9	41.9	63.6	63.6	63.6	63.6	2.7	2.7	2.7	2.7
ActionCLIP [40]	47.5	57.9	57.3	59.1	70.6	71.5	73.0	91.4	4.1	5.8	8.4	11.1
XCLIP [30]	53.0	57.3	62.8	64.0	48.5	75.6	83.7	91.4	3.9	4.5	6.8	10.0
A5 [17]	39.7	50.7	56.0	62.4	71.4	79.9	85.7	89.9	4.4	5.1	6.1	9.7
			Tun	ing pre-t	rained in	mage V	L mode	s				
CLIP image-FT	<u>49.6</u>	54.9	57.8	62.0	74.4	79.1	85.3	90.5	4.9	6.0	7.2	10.4
CLIP text-FT	54.5	61.6	63.1	65.0	80.1	82.8	85.8	88.1	6.2	6.1	6.3	9.1
ViFi-CLIP	57.2	62.7	64.5	66.8	80.7	85.1	90.0	92.7	6.2	7.4	8.5	12.4
	+4.2	+4.8	+1.7	+2.8	+9.3	+5.2	+4.3	+1.3	+1.8	+1.6	+0.1	+1.3

ViFi-CLIP directly adapts to supervised video tasks

Fully supervised setting (K400)

• ViFi-CLIP performs competitive in fully supervised setting

Method	Frames	Top-1	Top-5	Views	GFLOPs	TP
	Uni-mo	dal arc	hitectu	res		
Uniformer-B [23]	32	83.0	95.4	4×3	259	-
TimeSformer-L [4]	96	80.7	94.7	1×3	2380	-
Mformer-HR [31]	16	81.1	95.2	10×3	959	-
Swin-L [27]	32	83.1	95.9	4×3	604	-
Adapti	ng pre-tr	ained i	mage V	/L mode	els	
ActionCLIP [40]	32	83.8	96.2	10×3	563	67.7
X-CLIP [30]	16	84.7	96.8	4×3	287	58.5
A6 [17]	16	76.9	93.5	-	-	-
Tunin	g pre-tra	ined in	nage V	L model	s	
CLIP image-FT	16	82.8	96.2	4×3	281	71.1
CLIP text-FT	16	73.1	91.2	4×3	281	71.1
ViFi-CLIP	16	83.9	96.3	4×3	281	71.1

Further analysis

Is fine-tuning efficient w.r.t adapting CLIP?

• We compare the compute complexity of ViFi-CLIP with methods that explicitly adapt CLIP for videos

Method	GFLOPs	TP	Params (M)		
ActionCLIP [40]	563	67.7	168.5		
XCLIP [30]	287	58.5	131.5		
ViFi-CLIP	281	71.1	124.7		

Visualizations

Attention maps

• ViFi-CLIP learn Inter-object relationships and scene-dynamics from temporal cues

"Giraffe diving"

Conclusion

- We propose a simple and effective baseline for adapting CLIP to videos
- Performs favourably well against existing complex approaches on four benchmark in video action recognition
- Introduce base to novel generalization benchmark for videos
- Bridge and Prompt for low data regimes

