

Learning Intelligence & Vision Essential (LiVE) Group





# Multi-view Adversarial Discriminator:

### Mine the Non-causal Factors for Object Detection in Unseen Domains

[Highlight Paper]

### Mingjun Xu, Lingyun Qin, Weijie Chen, Shiliang Pu, Lei Zhang<sup>(⊡)</sup>

School of Microelectronics and Communication Engineering, Chongqing University, China Hikvision Research Institute

June, 2023

# **Overview: Multi-view Adversarial Discriminator**



# Challenges of object detection tasks in open-world



**Domain adaptation** 



Challenges(1) need to obtain the distribution of the target domain in advancefaced by DA(2) need to retrain when encountering a new target domain

### **Domain Generalization Object Detection**

Training one model for all scenes  $\longrightarrow$  Learning to extract **causal** features

Previous domain adversarial learning methods (DAL) faces two main problems :

 $\textbf{problem} \ \textcircled{1}$ 

In limited source domains: Common features *≠* Causal features



### Non-causal features

Significant shift of limited domains
 Latent non-causal features

 Nonexistent
 Insignificant
 domain shift in training data
 Cannot be eliminated by the feature extractor

### problem (2)

### Traditional DAL methods struggle to handle broader domain shift.



### **Multi-view Adversarial Discriminator**

To Address the two mentioned problems above:

#### We propose a Multi-view Adversarial Discriminator (MAD)

Spurious Correlations Generator (SCG)

Adding latent non-causal factors to the source domain via random transformations in the frequency domain

#### Multi-View Domain Classifier (MVDC)

To gain a clearer understanding of things, it is necessary to observe them from **multi-view**.

Mapping features to **multiple distinct feature spaces** Eliminating non-causal factors exhibited in each space



The overall structure of MAD can be divided into three parts:
(1) Yellow Part: FasterRCNN backbone network.
(2) Blue Part: Spurious Correlations Generator (SCG).
(3) Green Part: Multi-view Domain Classifier (MVDC).
(4) Red Part: Traditional DAL.

# **Synthetic Correlation Generator (SCG)**

The paper FSDR\* verified : Low & high frequency components contain more domain related information.

### In SCG:

1 Using DCT to obtain the spectral information of an image.

 $\mathbf{S} = \mathcal{F}(\mathbf{X})$ 

② Separating the causal and non-causal components of an image using a bandpass filter.



③ Keeping the causal component unchanged, randomly modify the non-causal component.

$$R_{G}(\mathbf{S}_{non}) = \sum_{c=1}^{C} \mathbf{S}_{non}^{c} \cdot (1 + \mathcal{N}(0, 1))$$
  
Gaussian random

(4) Using IDCT  $\mathcal{F}'(\cdot)$  to transform the enhanced image spectrum back to the spatial image  $\widehat{X}$ .

$$\widehat{\mathbf{X}} = \mathcal{F}'\left(R_G\left(\left(1 - \mathcal{M}(\mathbf{r})\right) \cdot \mathcal{F}(\mathbf{X})\right) + \mathcal{M}(\mathbf{r}) \cdot \mathcal{F}(\mathbf{X})\right)$$

#### Differences between SCG and previous domain augmentation:

1 Using a single domain without reference images.

② Random augmentation can add more non-causal factors.



#### Images generated by SCG

### **Multi-View Domain Classifier (MVDC)**

Single-view domain adversarial learning (DAL)

Domain differences : 
$$d_{\mathcal{H}}(D_{s1}, D_{s2}) = 2\left(1 - 2\min_{h \in \mathcal{H}}\left(err(h(\mathbf{X}_{s1})) + err(h(\mathbf{X}_{s2}))\right)\right)$$



 $\begin{array}{ll} \text{Minimize } d_{\mathcal{H}}: & \min_{\mathcal{F}} d_{\mathcal{H}}(D_{s1}, D_{s2}) \\ & \longrightarrow & \underbrace{\max_{\mathcal{F}} \min_{h \in \mathcal{H}} err(h(\mathbf{S}))}_{Standard \, DAL} \end{array}$ 

When maximizing and minimizing are **balanced**, the optimization is completed.

**MVDC disrupts**<br/>the balanceFeature<br/>extractorSingle-view<br/>Multi-viewdomain classifier $min d_{\mathcal{H}}(D_{s1}, D_{s2}) \Rightarrow \underbrace{max}_{\mathcal{F}} \sum_{i=1}^{M} \underbrace{min}_{h_i \in \mathcal{H}, e_i} err\left(h_i(e_i(\mathbf{S}))\right)}_{Our MAD}$ domain classifier  $h(\cdot)$ <br/>Multiple sets of<br/>AutoEncoders( $e_i$  (·)| $g_i$  (·)) & domain classifier  $h_i(\cdot)$ 

#### The loss of each view

features to different latent spaces.

(1) Reconstruction loss  $\mathcal{L}_{RC}$  $\mathcal{L}_{RC} = \frac{1}{M} \sum_{m=1}^{M} MSE\left(s, g_m(e_m(\mathbf{S}))\right)$  $(F_{D_S^1})$  $F_{D_{S}^{1}}$  , Encoder Decoder Ensuring the mapped features contain complete semantic information. е g ${}_{1}F_{D_{s}^{2}}$  , Domain classifier h (2) Domain classifier loss  $\mathcal{L}_{DC}$ Images in Reconstructed image different domains  $\widehat{F}_{D_{S}^{2}}^{_{ ext{other view}}}$  $\mathcal{L}_{DC} = -\frac{1}{M} \sum_{m=1}^{M} \sum_{k=1}^{K} y_k \cdot \log\left(p\left(D_m(e_m(\mathbf{S}_k))\right)\right)$ Structure of one branch of MVDC Ensuring that different features of the same view have domain discriminability. **③ View-different loss**  $\mathcal{L}_{MV}$ The total loss of MVDC :  $\mathcal{L}_{MV} = -\frac{\sum_{i}^{M} \sum_{j,i\neq j}^{M} \left\| e_i(\mathbf{S}) - e_j(\mathbf{S}) \right\|^2}{M^2 - M}$  $\mathcal{L}_{MVDC}^{(img,ins)} = \mathcal{L}_{RC} + \mathcal{L}_{DC} + \mathcal{L}_{MV}$ Ensuring that each AutoEncoder maps

 $D_S^1$ 

### Each level in object detection

# Image level Dilated convolutional layers [Global Non-causal Factors of Images] Instance level Fully connected layers [Non-causal factors of instances] Consistency loss $\mathcal{L}_{cst} = \sum_{i,i}^{M} \sum_{n}^{N} \left\| \frac{1}{|I|} \sum_{u,v} p_{i}^{(u,v)} - p_{j,n} \right\|_{2}$

Ensured consistency between classifiers in different level.

**Overall loss of MAD** 

$$\mathcal{L}_{MAD} = \mathcal{L}_{det} + \lambda \left( \mathcal{L}_{MVDC}^{img} + \mathcal{L}_{MVDC}^{ins} + \mathcal{L}_{cst} \right)$$
Detection loss
(Classification & Regression)

# **Experimental setup**

**Datasets** 7 benchmark datasets for object detection with distinctive characteristics.

|                             | Cityscapes Fo<br>KITTI                                                       |            | y Cityscapes<br>SIM 10k                                                                                                                                                                      | Rain Cityscapes<br>PASCAL VOC | BDD100k |  |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|--|--|--|--|--|
| Setting                     | Input resolution :<br>Training epochs<br>Learning rate :<br>Optimization met | :<br>hod : | Short edge adjusted to 600 pixels (aspect ratio unchanged)<br>10 epochs<br>$2 \times 10^{-3}$ , reduced to $2 \times 10^{-4}$ after the 7 <sup>th</sup> epoch<br>Stochastic gradient descent |                               |         |  |  |  |  |  |
| Framework<br>&<br>Equipment | { PyTorch<br>{ Mindspore                                                     | +<br>+     | NVIDIA TITA<br>Ascend 910                                                                                                                                                                    | N XP GPU<br>computing core    |         |  |  |  |  |  |

**Baseline** Two-stage **FasterRCNN** framework, The backbone is **VGG16** pre-trained on **ImageNet**.

# **Validity Verification**

| Results 0             |             | IIS(C,I,K) | b) trained on si | ingle source ut                                       | Jillaill                                             |  |
|-----------------------|-------------|------------|------------------|-------------------------------------------------------|------------------------------------------------------|--|
| Target                | Method      | Cityscapes | Foggy Cityscapes | Rain Cityscapes                                       | BDD100k                                              |  |
|                       | Source-only |            | 27.2             | 36.3                                                  | 24.0                                                 |  |
|                       | MLDG        |            | 29.2             | 42.1                                                  | 21.0                                                 |  |
| Citrus e e e e        | FACT        |            | 25.3             | 39.9                                                  | 26.0                                                 |  |
| Cityscapes            | FSDR        |            | 31.0             | 42.8                                                  | 26.2                                                 |  |
|                       | DANN+SCG    |            | 37.5             | 39.1                                                  | 26.1                                                 |  |
|                       | (MAD(Ours)  |            | 38.6             | 42.3                                                  | <u>20.1</u><br><u>3</u> <u>28.0</u><br><u>4</u> 17.5 |  |
|                       | Source-only | 29.9       |                  | 38.4                                                  | 17.5                                                 |  |
|                       | MLDG        | 30.4       | _                | 38.6                                                  | 18.0                                                 |  |
| Es a ave Citus son as | FACT        | 30.0       | —                | 38.7                                                  | 20.2                                                 |  |
| Foggy Cityscapes      | FSDR        | 31.3       | _                | 40.8                                                  | 20.4                                                 |  |
|                       | DANN+SCG    | 38.4       |                  | 40.4                                                  | 22.4                                                 |  |
|                       | (MAD(Ours)  | 41.3       | —                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                      |  |
|                       | Source-only | 33.6       | 27.2             | 34.3                                                  | _                                                    |  |
|                       | MLDG        | 24.7       | 17.1             | 20.0                                                  |                                                      |  |
|                       | FACT        | 32.4       | 24.3             | 33.9                                                  |                                                      |  |
| DD100K                | FSDR        | 32.4       | 27.8             | 34.7                                                  |                                                      |  |
|                       | DANN+SCG    | 35.8       | 29.3             | 33.9                                                  |                                                      |  |
|                       | ( MAD(Ours) | 36.4       | 30.3             | 36.1                                                  | -                                                    |  |

### Posulte on four domaine (C E P R) trained on single source domain

MAD can achieve better results in most cross-domain scenarios

# **Comparison with existing methods**

| Methods                  |                     | Dataset used     | person | rider | car  | truck | bus  | train | motor | bike  | mAP  |
|--------------------------|---------------------|------------------|--------|-------|------|-------|------|-------|-------|-------|------|
| Source-only              |                     | Single Source    | 27.1   | 39.3  | 36.0 | 14.2  | 31.4 | 9.4   | 26.9  | 33.4  | 27.2 |
|                          | DAF [6]             |                  | 31.6   | 43.6  | 42.8 | 23.6  | 41.3 | 21.2  | 28.9  | 32.6  | 33.2 |
|                          | SW-DA [34]          |                  | 31.8   | 44.3  | 48.9 | 21.0  | 43.8 | 28.0  | 28.9  | 35.8  | 35.3 |
|                          | SC-DA [52]          | Single Source    | 33.8   | 42.1  | 52.1 | 26.8  | 42.5 | 26.5  | 29.2  | 34.5  | 35.9 |
| DA                       | MTOR [3]            | &                | 30.6   | 41.4  | 44.0 | 21.9  | 38.6 | 40.6  | 28.3  | 35.6  | 35.1 |
| DA                       | ICR-CCR [43]        | Target images    | 32.9   | 43.8  | 49.2 | 27.2  | 45.1 | 36.4  | 30.3  | 34.6  | 37.4 |
|                          | Coarse-to-Fine [48] | (without labels) | 34.0   | 46.9  | 52.1 | 30.8  | 43.2 | 29.9  | 34.7  | 37.4  | 38.6 |
|                          | GPA [44]            |                  | 32.9   | 46.7  | 54.1 | 24.7  | 45.7 | 41.1  | 32.4  | 38.7  | 39.5 |
|                          | Center-Aware [17]   |                  | 41.5   | 43.6  | 57.1 | 29.4  | 44.9 | 39.7  | 29.0  | 36.1  | 40.2 |
| DIDN [23]                |                     | Multiple Source  | 31.8   | 38.4  | 49.3 | 27.7  | 35.7 | 26.5  | 24.8  | 33.1  | 33.4 |
| DG                       | LMDG [21]           |                  | 32.2   | 41.7  | 38.9 | 19.2  | 33.0 | 9.1   | 23.5  | 36.3  | 29.2 |
|                          | FACT [45]           | Single Source    | 26.2   | 41.2  | 35.9 | 13.6  | 27.7 | 3.0   | 23.3  | 31.3  | 25.3 |
|                          | FSDR [19]           | Single Source    | 31.2   | 44.4  | 43.3 | 19.3  | 36.6 | 11.9  | 27.1  | 34.1  | 31.0 |
|                          | MAD                 |                  | 34.2   | 47.4  | 45.0 | 25.6  | 44.0 | 42.4  | 30.28 | 40.12 | 38.6 |
| Oracle - Train on target |                     | Target           | 37.8   | 47.4  | 53.0 | 31.6  | 52.9 | 34.3  | 37.0  | 40.6  | 41.8 |

1 MAD achieves the best performance among domain generalization object detection methods.

(2) MAD even surpasses some of the traditional Domain Adaptation methods.

### **Universal validation**

#### The generalization ability of category "car"

### $\mathsf{C} \rightarrow \{\mathsf{F}, \mathsf{R}, \mathsf{B}, \mathsf{V}, \mathsf{S}, \mathsf{K}\}$

| Method     | F    | R    | B    | V    | S    | K    |
|------------|------|------|------|------|------|------|
| SourceOnly | 36.0 | 39.0 | 41.3 | 62.0 | 39.2 | 73.4 |
| DAF        | 42.8 | 52.9 | 41.4 | 59.2 | 39.0 | 72.1 |
| MLDG       | 38.9 | 52.7 | 39.4 | 61.4 | 37.2 | 63.9 |
| FACT       | 35.9 | 48.8 | 42.0 | 65.3 | 41.2 | 73.2 |
| FSDR       | 43.3 | 52.7 | 45.4 | 63.4 | 42.2 | 73.8 |
| MAD        | 45.0 | 54.0 | 42.4 | 67.6 | 43.2 | 74.1 |

#### **Testing MAD on Categorical Datasets**

| Source | Target |      |      |      |                  |      |      |      |      |      |                |      |      |      |      |      |
|--------|--------|------|------|------|------------------|------|------|------|------|------|----------------|------|------|------|------|------|
|        | ERM    |      |      |      | ERM+SCG DANN+SCG |      |      |      |      | G    | MVDC+SCG (MAD) |      |      |      |      |      |
| PACS   | Р      | А    | С    | S    | Р                | А    | С    | S    | Р    | А    | С              | S    | Р    | А    | С    | S    |
| Р      | -      | 61.9 | 26.2 | 31.9 | -                | 62.8 | 29.3 | 40.1 | -    | 63.1 | 35.3           | 43.1 | -    | 66.6 | 40.9 | 44.2 |
| А      | 90.6   | -    | 67.3 | 57.2 | 90.8             | -    | 68.7 | 61.7 | 91.4 | -    | 70.7           | 64.3 | 92.6 | -    | 71.2 | 68.9 |
| С      | 79.5   | 64.1 | -    | 65.6 | 78.6             | 64.3 | -    | 69.0 | 79.2 | 63.6 | -              | 69.3 | 79.9 | 64.6 | -    | 70.9 |
| S      | 48.0   | 42.8 | 60.5 | -    | 49.4             | 51.5 | 62.2 | -    | 48.7 | 53.8 | 63.4           | -    | 53.2 | 57.4 | 63.8 | -    |
| VLCS   | V      | L    | С    | S    | V                | L    | С    | S    | V    | L    | С              | S    | V    | L    | С    | S    |
| V      | -      | 39.6 | 96.1 | 68.9 | -                | 40.1 | 97.6 | 69.2 | -    | 43.4 | 98.3           | 69.5 | -    | 47.2 | 98.5 | 71.4 |
| L      | 61.3   | -    | 82.6 | 43.8 | 61.7             | -    | 83.7 | 46.9 | 61.7 | -    | 83.7           | 46.9 | 62.2 | -    | 86.7 | 51.8 |
| С      | 50.6   | 20.7 | -    | 42.7 | 51.2             | 21.9 | -    | 43.5 | 51.7 | 27.2 | -              | 44.9 | 51.8 | 29.6 | -    | 46.0 |
| S      | 60.2   | 45.5 | 72.7 | -    | 60.9             | 47.4 | 72.9 | -    | 62.4 | 50.0 | 74.9           | -    | 64.0 | 51.3 | 75.4 | -    |

# MAD exhibits generalization ability in **a wider range of domains**.

MAD is also effective in **classification tasks**.

# Feature visualization & Hyperparameter analysis





- 1 mAP increases with the number of view M. Convergence occurs when M > 3.
- (2) When the loss balancing factor  $\lambda = 0.1$ , the network performance is optimal.





# Multi-view Adversarial Discriminator: Mine the Non-causal Factors for Object Detection in Unseen Domains

Paper



[2304.02950] Multi-view Adversarial Discriminator: Mine the Non-causal Factors for Object Detection in Unseen Domains (arxiv.org) Code



K2OKOH/MAD (github.com)

E-mail: mingjunxu@cqu.edu.cn