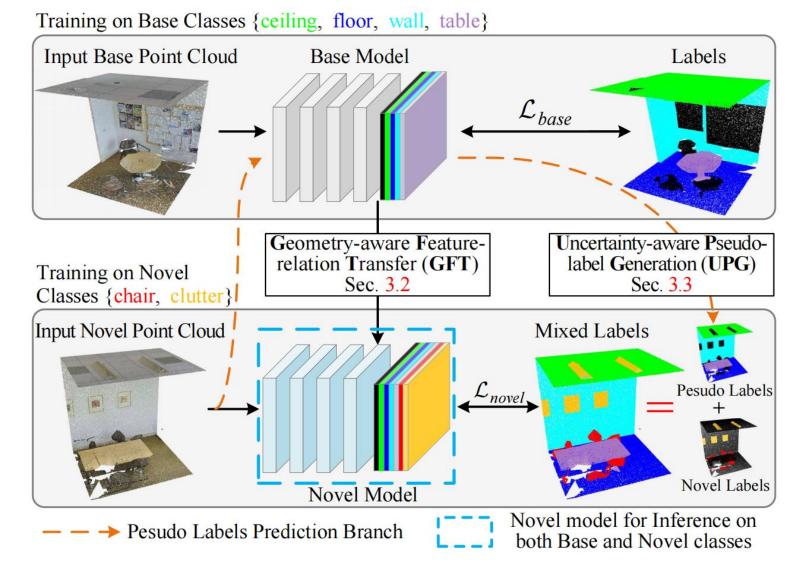


Geometry and Uncertainty-Aware 3D Point Cloud Class-Incremental Semantic Segmentation

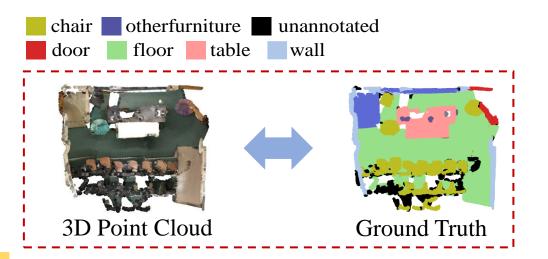
Yuwei Yang¹ Munawar Hayat² Zhao Jin¹ Chao Ren¹ Yinjie Lei^{1,⊠} ¹Sichuan University ²Monash University

THU-PM-110

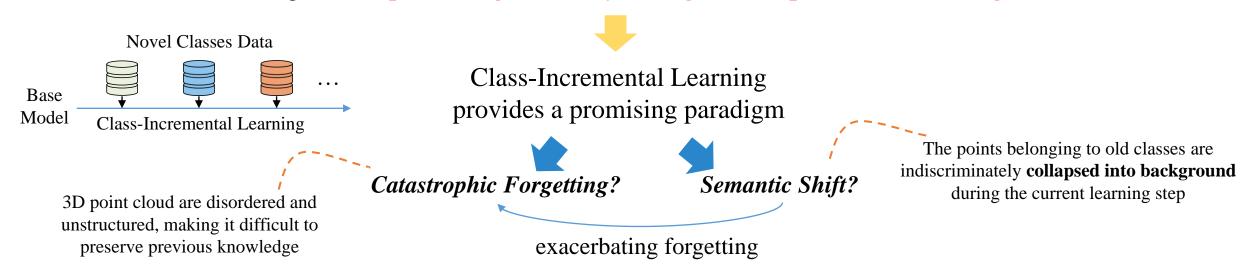
- We are the first to propose a <u>class-incremental learning framework</u> for 3D point cloud semantic segmentation;
- To transfer previous knowledge and prevent forgetting caused by unstructured point cloud, we propose a GFT module;
- To tackle the semantic shift issue where old classes are indiscriminately collapsed into the background, we design an UPG strategy.



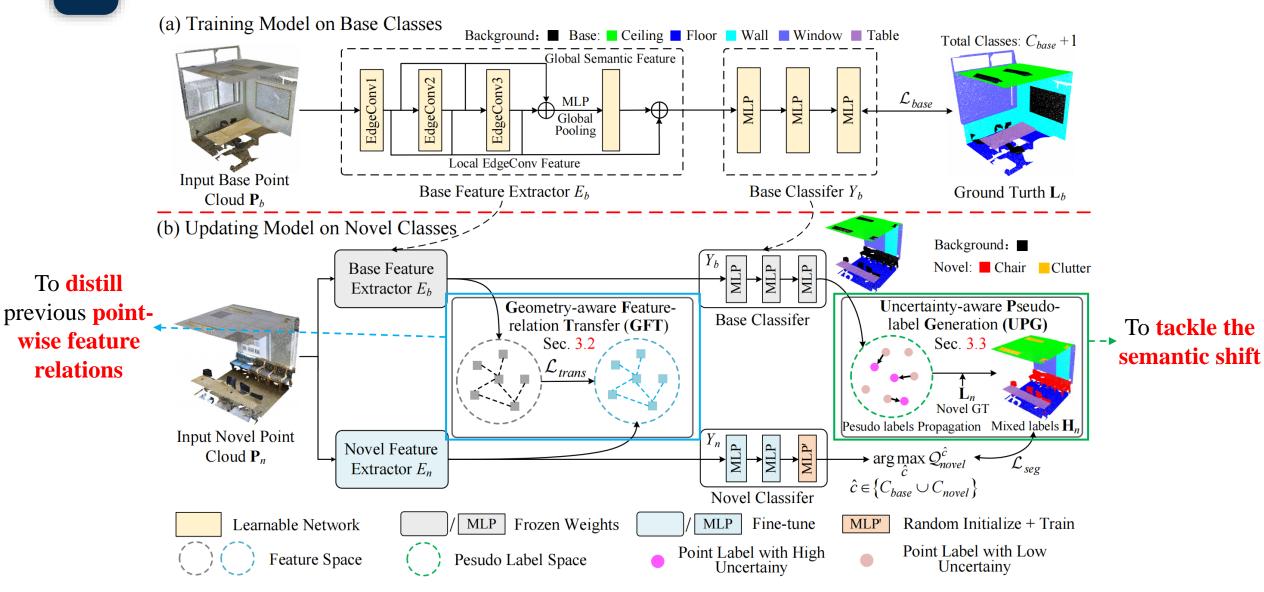
In the traditional point cloud semantic segmentation setting, all classes are <u>learned at once</u> (Joint Training)



New categories are gradually discovered in real-life scenarios, and updating the model to cater for these new categories **requires large memory storage and expensive re-training**



Method Overview



02

03 **Overall Pipeline** \rightarrow Class-Incremental Segmentation on 3D Point Cloud

$$\mathcal{L}_{base} = -\sum_{i} \sum_{c} \mathbf{L}_{b}^{i} log(Y_{b}^{c}(E_{b}(\mathbf{P}_{b}^{i})))$$

$$Train E_{b} + Y_{b} \text{ on}$$

$$D_{base} \text{ data}$$
(a) Base Model Training (b) Novel Model Training (c) Inference
$$\mathcal{L}_{novel} = \mathcal{L}_{seg}^{i} + \mathcal{L}_{trans}$$

$$\mathcal{L}_{novel} = \mathcal{L}_{seg} + \mathcal{L}_{trans}$$

- Train the base model (feature extractor E_b combined with the classifier Y_b , denoted as base/old model M_{base}) on D_{base} ;
- ▷ Use the pre-trained base model to initialize a new model and randomly initialize the last layer of new classifier Y_n (denoted as novel model M_{novel}), and train on D_{novel} data;
- > Apply novel model M_{novel} to segment point clouds of all $C_{base} + C_{novel}$ classes in the evaluation phase.

Geometry-aware Feature-relation Transfer (GFT)

(1) Apply the Farthest Point Sampling (FPS) to find anchor points;

Geometry-aware Featurerelation Transfer (GFT) Sec. 3.2 \mathcal{L}_{trans}

03

(2) Use *xyz* coordinates to calculate the distance **<u>between other</u> <u>points and anchor points</u>** to sample *k*-nearest neighbors to form areas reflecting the local geometric structures;

(3) Model the **point-wise relative relationships** within the geometric neighbors: relative *xyz* coordinates

$$\mathcal{R}^{a} = \frac{1}{K} \sum_{k \in \mathcal{N}(a)} (p_{n}^{a,k} - p_{n}^{a}) \oplus (\mathbf{F}_{n}^{a,k} - \mathbf{F}_{n}^{a})$$
relative features

relative leatures

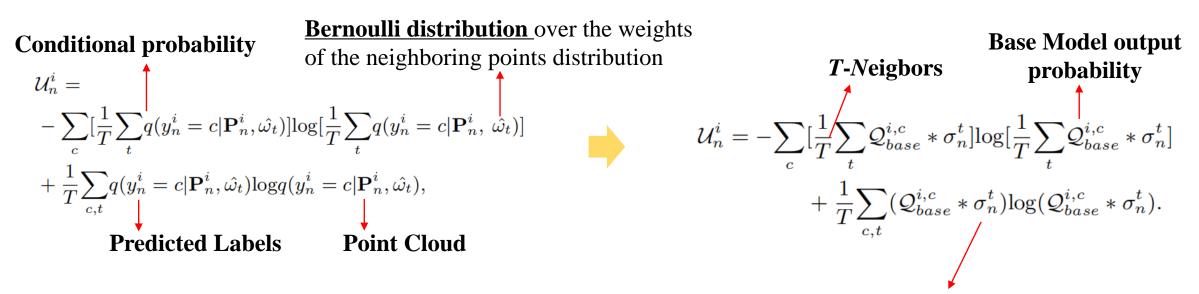
(4) Perform **<u>base-to-novel feature relation distillation</u>** via MSE loss:

$$\mathcal{L}_{trans} = \frac{1}{Z} \sum_{a=1}^{Z} ||\mathcal{R}^{a}_{novel} - \mathcal{R}^{a}_{base}||^{2}$$

We argue that the geometry-aware feature relation is <u>discriminative for various semantic categories</u> of 3D point cloud, and can be exploited to migrate knowledge while learning continually.

03 Uncertainty-aware Pseudo-label Generation (UPG)

Different from the traditional Monte Carlo Dropout (MC-Dropout) method, which performs multiple predictions to estimate uncertainty, we apply <u>neighborhood spatial aggregation method combined with</u> <u>MC-dropout [27]</u> to complete the estimation of the point distribution uncertainty **at once**.



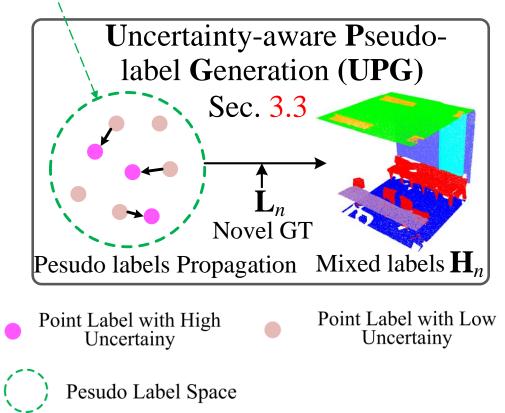
Bayesian Active Learning by Disagreement (BALD) [15] as our spatial sampling uncertainty estimation function

Calculate the **normalized cosine similarity** between neighbors and point *i* to implement $\hat{\omega}_t$

Uncertainty-aware Pseudo-label Generation (UPG)

Base model outputs

03



We set τ as the threshold to determine the points with the high or low uncertainty. For a point with high uncertainty, our strategy is to **replace its prediction with the label of its near-est neighbor** *t* having the low uncertainty:

We combined the pseudo label with the current novel class labels to <u>form the mixed labels</u> using:

$$\mathbf{H}_{n}^{i} = \begin{cases} \underset{c}{\operatorname{argmax}} \mathcal{Q}_{base}^{i,c} & \mathbf{L}_{n}^{i} = c_{bg}^{\prime}, \underset{c}{\operatorname{argmax}} \mathcal{Q}_{base}^{c} \neq c_{bg} \text{ and } \mathcal{U}_{n}^{i} \leq \tau, \\ \underset{c}{\operatorname{argmax}} \mathcal{Q}_{base}^{t,c} & \mathbf{L}_{n}^{i} = c_{bg}^{\prime}, \underset{c}{\operatorname{argmax}} \mathcal{Q}_{base}^{c} = c_{bg} \text{ or } \mathcal{U}_{n}^{i} > \tau, \\ \underset{c}{\operatorname{L}_{n}^{i}} & \mathbf{L}_{n}^{i} \neq c_{bg}^{\prime}, \\ \underset{\text{ignore}}{\operatorname{ignore}} & \text{otherwise}, \end{cases}$$

Finally, the <u>cross-entropy segmentation loss</u> is constructed for novel model training:

$$\mathcal{L}_{seg} = -\sum_{i} \sum_{\hat{c}} \mathbf{H}_{n}^{i} log(\mathcal{Q}_{novel}^{i,\hat{c}})$$

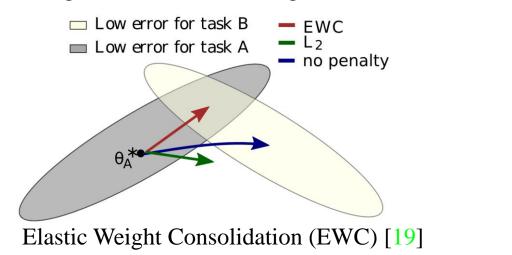
04 Experimental Results

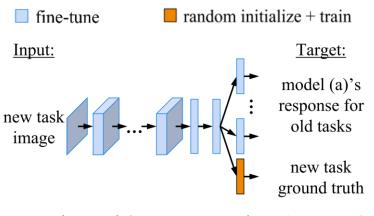
To compare our approach, we design <u>4 baselines in 2 directions</u>:

1) *Direct adaptation methods.* "Freeze and Add (F&A)": <u>Freeze the base model and adds a novel classifier</u> <u>output layer</u> when training on the D_{novel} . "Fine-Tuning (FT)": <u>Randomly initialize the new classifier last</u> <u>layer</u> and joins the base model for fine-tuning.

2) *Forgetting-prevention methods*. Adapt <u>Elastic Weight Consolidation (EWC)</u> and <u>Learning without</u> <u>Forgetting</u> (LwF) method from classical incremental learning models to 3D point cloud incremental segmentation setting.

*Base Training (**BT**): Training model on Base classes.*Joint Training (**JT**): Joint training on all Base+Novel classes. (**Upper Bound**)





Learning without Forgetting (LwF) [21]

04 Experimental Results

One (S^0) where classes are incrementally introduced as per their <u>original class label order</u> in the dataset, and the other (S^1) introduces classes <u>in an alphabetical order</u>.

Two different paradigms to develop C_{base} and C_{novel} :

Table 1. Experimental comparisons of 3D class-incremental segmentation methods on S3DIS dataset of S^0 and S^1 split. We apply the mIoU (%) as the evaluation metric. "BT", "F&A", "FT" in the table represents Base Training, Freeze and Add, Fine-Tuning respectively. "JT" denotes Joint Training on all base+novel classes at once. Asterisk (*) denotes traditional class-incremental methods EWC [19] and LwF [21] in our reproduction for 3D semantic segmentation. The joint training is treated as the upper bound, and the best results of incremental learning methods are in bold.

		C_{novel} =5						$C_{novel}=3$							$C_{novel}=1$					
Methods	5 	S^0		S^1		S^0			$ $ S^1 $ $			$ $ S^0			$ $ S^1					
	0-7	8-12	all	0-7	8-12	all	0-9	10-12	all	0-9	10-12	all	0-11	12	all	0-11	12	all		
BT	48.54	-	-	37.24	-	-	46.80	-	-	40.73	-	-	45.00	-	-	45.88	-	-		
F&A	44.25	12.33	31.98	37.71	42.89	39.44	44.28	3.34	34.83	41.11	35.64	39.85	44.57	0.05	41.14	45.35	0.05	41.86		
FT	34.96	30.25	33.15	10.99	50.67	26.53	28.87	31.56	29.49	17.83	54.69	26.34	29.44	29.52	29.45	23.80	5.74	22.41		
EWC*	39.38	31.07	36.19	23.19	54.84	35.36	37.13	37.92	37.31	29.38	55.53	35.41	36.55	19.94	35.27	25.60	9.81	24.39		
LwF*	44.55	35.01	40.88	32.83	55.19	41.43	43.07	38.34	41.98	37.69	54.73	41.62	39.94	35.50	39.60	32.16	18.26	31.09		
Ours	48.94	39.56	45.33	38.17	55.20	44.72	45.15	45.33	45.19	39.83	57.59	43.93	44.08	35.69	43.43	40.33	19.28	38.71		
JT	50.23	41.74	46.97	38.38	60.11	46.74	48.62	41.44	46.97	42.63	60.44	46.74	47.51	40.41	46.97	47.09	42.55	46.74		
													_			_				
Race Clas	2002					Considering the overall mIoU, our method consistently <u>achieves</u>											<u>'es</u>			
Dast Clas	Base Classes			Novel Classes			best	resu	<u>ts</u> .							-				

Table 2. Experimental comparisons of 3D class-incremental segmentation methods on ScanNet dataset of S^0 and S^1 split. We apply the mIoU (%) as the evaluation metric. "BT", "F&A", "FT" in the table represents Base Training, Freeze and Add, Fine-Tuning respectively. "JT" denotes Joint Training on all base+novel classes at once. Asterisk (*) denotes traditional class-incremental methods EWC [19] and LwF [21] in our reproduction for 3D semantic segmentation. The joint training is treated as the upper bound, and the best results of incremental learning methods are in bold.

	C_{novel} =5						$C_{novel}=3$						$C_{novel}=1$					
Methods		S^0			S^1			S^0			S^1			S^0			S^1	
	0-14	15-19	all	0-14	15-19	all	0-16	17-19	all	0-16	17-19	all	0-18	19	all	0-18	19	all
BT	37.73	-	-	29.30	-	-	34.03	-	-	30.84	-	-	31.57	-	-	30.78	-	-
F&A	36.06	1.77	27.48	25.25	18.72	23.62	32.58	0.86	27.82	26.95	7.37	24.02	30.99	0.95	29.49	30.41	0.01	28.89
FT	9.39	13.65	10.45	5.83	34.03	12.88	8.43	10.98	8.82	4.88	40.94	10.29	8.02	10.46	8.14	4.76	7.57	4.90
EWC*	17.75	13.22	16.62	14.93	33.30	19.52	15.70	11.74	15.11	8.78	31.74	12.22	15.66	6.76	15.21	12.24	8.84	12.07
LwF*	30.38	13.37	26.13	24.04	37.88	27.50	26.22	13.88	24.37	22.76	42.34	25.70	22.15	12.56	21.67	20.63	13.88	20.29
Ours	34.16	13.43	28.98	26.04	35.51	28.41	28.38	14.31	26.27	28.79	40.31	30.52	25.74	12.62	25.08	24.16	12.97	23.60
JT	38.13	16.63	32.76	30.81	38.79	32.81	35.46	17.44	32.76	31.65	39.38	32.81	33.53	18.08	32.76	32.91	30.76	32.81

Our approach achieves promising results, <u>closer to the joint training (upper bound</u>) using all data at once.

04 Experimental Results

Table 3. Experiments with various backbones on S3DIS datase	et.
---	-----

Backbone	Methods	$C_{novel}=3 / S0$						
		0-9	10-12	all				
PointNet++ [5]	Ours Joint Training	$\frac{48.93}{51.06}$	$\frac{42.64}{44.91}$	$\frac{47.48}{49.64}$				
PointConv [7]	Ours Joint Training	$\frac{49.67}{49.82}$	$\frac{45.53}{48.65}$	$\frac{48.72}{49.55}$				
DGCNN [6]	Ours Joint Training	$\frac{45.15}{48.62}$	$\frac{45.33}{41.44}$	$\frac{45.19}{46.97}$				

Our approach has a <u>consistent and superior performance</u> close to the joint training with various backbones.

<u>Multi-step increment</u> (compared to adding novel classes at once) is <u>more challenging</u>, since the model need to deal with the semantic shift of both old and the unknown future classes.

Table 4. Multi-step incremental segmentation of overlapped setting on S3DIS datasets in S^0 split. We use mIoU (%) as the evaluation metric. The first 8 classes are base, and the remaining 5 classes are novel. Instead of the incremental procedure in the disjoint setting of $C_{novel}=5$, We use multi-step increments, each step increments 1 class, total increments 5 times.

	0	1	2	3	4	5	6	7	8	9	10	11	12	all	base	novel
Base Training	88.74	96.58	73.30	0.00	6.76	40.60	17.61	64.70	-	-	-	-	-	-	48.54	-
Step 1	88.09	95.63	73.46	0.00	7.93	39.70	22.76	63.06	34.42	-	-	-	-	47.23	48.83	34.42
Step 2	85.46	95.66	71.57	0.00	0.90	32.01	19.74	50.07	13.69	3.73	-	-	-	37.28	44.43	8.71
Step 3	85.72	95.76	72.07	0.00	0.81	34.79	11.74	51.78	12.32	3.84	44.31	-	-	37.56	44.08	20.16
Step 4	85.91	95.37	65.17	0.00	0.00	31.28	6.82	44.29	0.21	5.04	40.10	8.02	-	31.85	41.11	13.34
Final Step 5	88.04	95.83	65.89	0.00	0.00	34.48	8.01	44.38	0.07	3.56	36.18	10.63	33.50	32.35	42.08	16.79

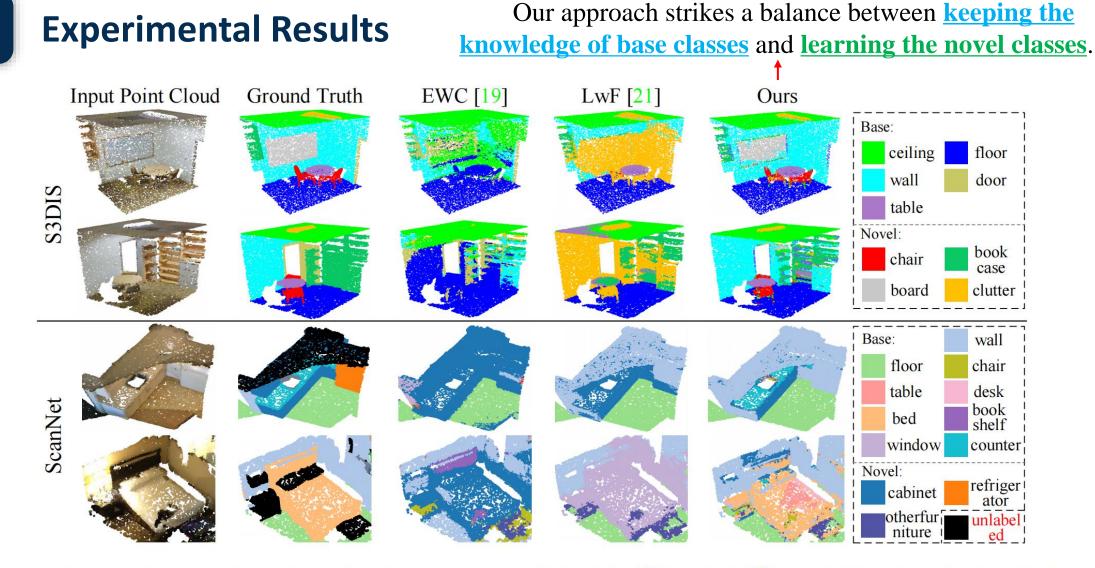
04

Experimental Results incremental classification across datasets

The statistics of the cross-dataset incremental classification

Acc_{o}^{*} The base model's accuracy;	The statistics of the cross-dataset incremental classification									
	Settings	Task	#Classes	#Train	#Test					
Acco Accuracy on base classes using the final incremental mode		Old	26	4999	1496					
Acc_n Accuracy on <u>novel classes using the final incremental mode</u>	ModelNet40→ScanObjectNN	Novel	11	1496	475					
	ModelNet40→ModelNet10	Old	30	5852	1560					
$\Delta = \frac{Acc_o^* - Acc_o}{Acc_o^*} \times 100\%$ The lower Δ represents less forgetting.	Modelinet40→Modelinet10	Novel	10	3991	908					
ACC_o										

Backbone	Methods	$\frac{\text{Model}}{Acc_o^*\uparrow}$		ScanObje $Acc_n\uparrow$		$\begin{array}{c} Mode \\ Acc_o^* \uparrow \end{array}$	$\frac{\text{elNet40} - }{Acc_o \uparrow}$	\rightarrow ModelNe $Acc_n \uparrow$	et10 △↓	-
DGCNN [38]	lwf-3D [6]* +GFT +GFT+UPG	92.91 92.91 92.91	73.34 76.31 78.19	79.41 81.19 82.82	21.06 17.87 15.84	91.71 91.71 91.71	87.14 88.95 88.99	93.32 93.32 93.86	4.98 3.01 2.97	- Introducing proposed
PointNet [28]	lwf-3D [6]* +GFT +GFT+UPG	90.14 90.14 90.14	84.77 84.09 86.84	76.87 77.15 79.12	5.96 3.92 3.66	88.71 88.71 88.71	81.59 82.23 83.18	90.41 90.43 91.27	8.03 7.30 6.20	 GFT/UPG module significantly improve all performance across various
PointConv [39]	lwf-3D [6] * +GFT +GFT+UPG	92.69 92.69 92.69	87.19 88.32 88.79	79.33 79.75 80.08	5.93 4.71 4.21	91.26 91.26 91.26	83.59 83.80 84.65	92.13 92.03 93.32	8.41 8.18 7.24	backbone architectures.



04

Figure 4. Qualitative comparison with the forgetting-prevention methods EWC [19] and LwF [21] on S3DIS and ScanNet datasets of $C_{novel} = 5$ in S^0 split. Only the base and novel classes included in current point cloud scenario are explained in the legend. Results in black on ScanNet dataset represent unlabeled and do not belong to either the base or novel classes.

Geometry and Uncertainty-Aware 3D Point Cloud Class-Incremental Semantic Segmentation

Project: https://github.com/leolyj/3DPC-CISS

