Poster Session: THU-PM-014

Neural Scene Chronology

Haotong Lin¹, Qianqian Wang², Ruojin Cai², Sida Peng¹,

Hadar Averbuch-Elor³, Xiaowei Zhou¹ and Noah Snavely²

1. Zhejiang University, 2. Cornell University, 3. Tel Aviv University

Problem Motivation

Chronology reconstruction

- Landmarks evolve over time.
- A 3D reconstruction can only capture a certain moment of the landmark.
- We need Chronology Reconstruction!

Times Square, February, 2011

Times Square, December, 2011

Previous methods: Scene Chronology

5PointZ

Times Square

Scene Chronology [Matzen & Snavely, ECCV 2014] only reconstructs planes, resulting in limited photo-realism.

Previous methods: NeRF-W, HaNeRF

Trevi Fountain (Nearly constant over time)

5Pointz (The underlying apperance changes significantly over time)

NeRF-W [Martin-Brualla et al., CVPR 2021] and HaNeRF [Chen et al., CVPR 2022] only handle static scenes (e.g., Trevi Fountain) and cannot reconstruct a scene (e.g., 5Pointz) with significant changes to the underlying appearance over years.

Proposed Method

Key challenge

- This problem is highly challenging, as every photo entangles the viewpoint, scene content (time) and illumination.
- We need to decompose these factors, achieving independent control.

4D reconstruction from Internet photos

• We represent such a time-varying landmark as color c and density σ fields.

$$\boldsymbol{c}, \boldsymbol{\sigma} = F(\boldsymbol{x}, \boldsymbol{d}, t_i, l_i)$$

Technical challenges

 Fitting above model to a set of time-stamped images underfits scene-level temporal changes, blending different scene appearances together.

Technical challenges

- Fitting above model to a set of time-stamped images underfits scene-level temporal changes, blending different scene appearances together.
- In contrast, applying positional encoding to the time input overfits the temporal signal.

Step function encoding

 Changes in the underlying content of urban scenes often happen abruptly, and this content typically remains constant for a period after these changes. We introduce the step function encoding.

$$\bar{h}(t) = \begin{cases} \frac{1}{2} \exp(\frac{t-u}{\beta}) & \text{if } t \leq u\\ 1 - \frac{1}{2} \exp(\frac{-(t-u))}{\beta}) & \text{if } t > u \end{cases}$$

Step function encoding

Formulation: Recovering a noiseless piecewise signal from a noisy signal.

Experimental Results

Controlling the illumination using a reference image

Fixed viewpoint, changing Illumination

Times Square

Controlling the illumination using a reference image

Fixed time, rendering with the illumination of the reference image

Reference image

The Metropolitan Museum of Art

2010-06-30

Thank you for watching! Code and Data: <u>https://zju3dv.github.io/neusc</u>