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Overview iDisc

• Lift any handcrafted bias imposed on the scene representation. 

• One assumption only: scene is a discrete set of high-level concepts. 

• iDisc meta-learns the best internal representations.



Monocular and biases

• Ill-posed problem, priors are needed.

• Typically, the scene representation is handcraftedly biased. 

• Can it learn how to generate appropriate “priors” for the given input?
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What is a concept?

• Set of high-level 
structures 
deemed 
appropriate to 
describe the 
scene.

• Internal discrete 
representations 
learned without 
any supervision. 
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Quantitative results (common benchmarks)

Method δ1 ↑ RMS ↓ A.Rel ↓

BTS 0.964 2.459 0.057

AdaBins 0.964 2.360 0.058

DPT 0.965 2.315 0.059

NeWCRF 0.974 2.129 0.052

iDisc 0.977 2.067 0.050

Table 1. NYU-Depth v2 official test set results.



Quantitative results (common benchmarks)

Method δ1 ↑ RMS ↓ A.Rel ↓

BTS 0.885 0.392 0.110

AdaBins 0.903 0.364 0.103

DPT 0.904 0.357 0.110

NeWCRF 0.922 0.334 0.095

iDisc 0.940 0.313 0.086

Method SIlog↓ iRMS ↓ A.Rel ↓

ViP-DeepLab 10.80 11.77 0.089

NeWCRF 10.39 11.03 0.084

PixelFormer 10.29 10.84 0.082

iDisc 9.89 10.73 0.081

Table 2. KITTI-Eigen split validation set results. Table 3. KITTI official online benchmark results.

Method δ1 ↑ RMS ↓ A.Rel ↓

BTS 0.885 0.392 0.110

AdaBins 0.903 0.364 0.103

DPT 0.904 0.357 0.110

NeWCRF 0.922 0.334 0.095

iDisc 0.940 0.313 0.086

Table 2. KITTI-Eigen split validation set results.



Quantitative results (proposed benchmarks)

Method δ1 ↑ RMS ↓ A.Rel ↓

BTS 0.780 8.319 0.267

AdaBins 0.750 8.686 0.195

NeWCRF 0.707 9.437 0.232

iDisc 0.821 7.567 0.163

Method δ1 ↑ RMS ↓ A.Rel ↓

BTS 0.757 10.11 0.186

AdaBins 0.748 10.24 0.201

NeWCRF 0.702 10.98 0.219

iDisc 0.809 8.898 0.163

Table 4. Results on Argoverse1.1 proposed split. Table 5. Results on DDAD proposed split.



Quantitative results (generalization)

Method SUN Diode Argoverse DDAD

BTS 14.25 23.78 51.80 40.51

AdaBins 13.20 22.54 52.33 50.71

NeWCRF 11.27 18.69 46.77 44.24

iDisc 10.91 18.11 33.35 29.37

Method 11.5° ↑ RMS ↓ Median↓

GeoNet 0.484 26.9 11.8

GeoNet++ 0.502 26.7 11.2

Bae et al. 0.622 23.5 7.5

iDisc 0.638 22.8 7.3

Table 6. Zero-shot testing SIlog results. Table 7. NYU-Surface v2 official test set results.











Conclusion

• Despite the ill-posed problem, handcrafted biases are limiting. 

• Input-dependent representations allow better generalization.

• General architecture for any dense real-valued tasks.
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