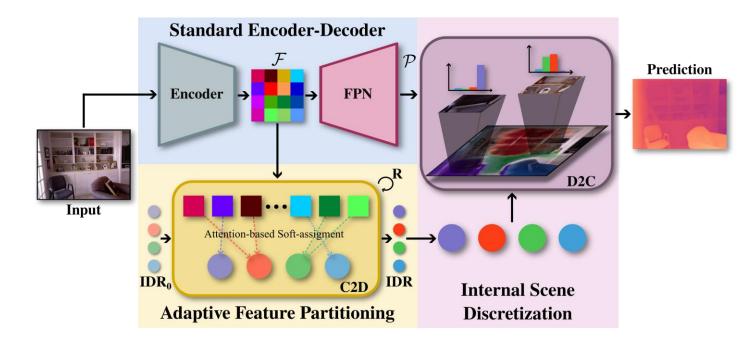
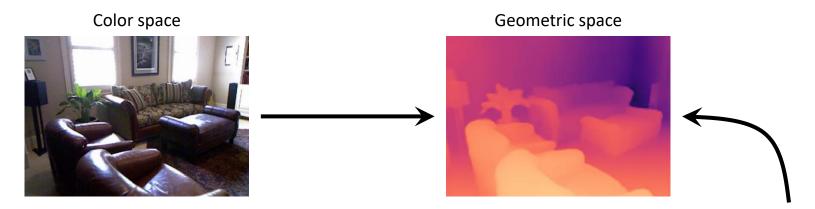


iDisc: Internal Discretization for Monocular Depth Estimation


Luigi Piccinelli, Christos Sakaridis, Fisher Yu

Poster THU-PM-083

Project page: vis.xyz/pub/idisc
Code and models: github.com/SysCV/idisc


Overview iDisc

- Lift any handcrafted bias imposed on the scene representation.
- One assumption only: scene is a discrete set of high-level concepts.
- iDisc meta-learns the best internal representations.

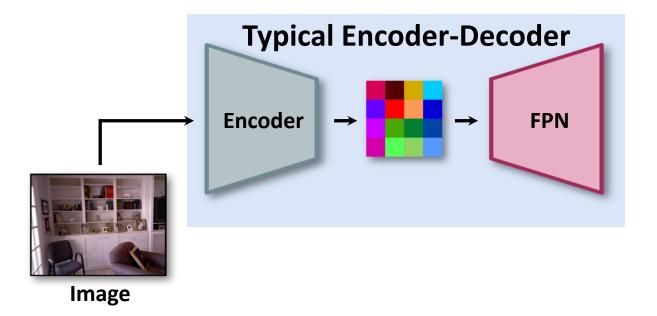
Monocular and biases

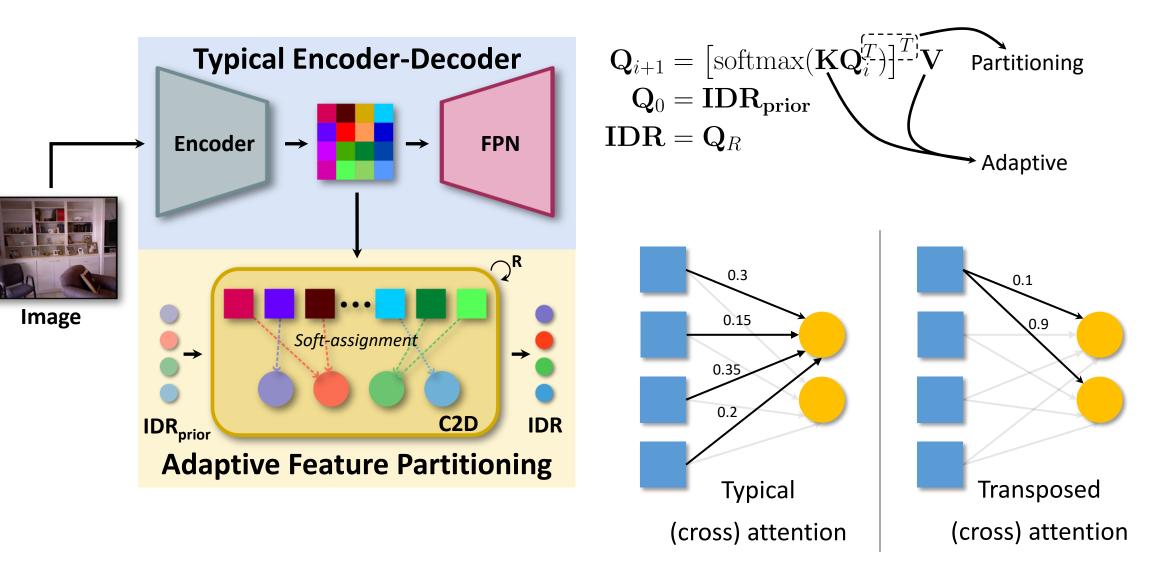

- Ill-posed problem, priors are needed.
- Typically, the scene representation is handcraftedly biased.
- Can it learn how to generate appropriate "priors" for the given input?

Explicit biases (e.g. planar, semantic-guided)

Monocular and biases


- Ill-posed problem, priors are needed.
- Typically, the scene representation is handcraftedly biased.
- Can it learn how to generate appropriate "priors" for the given input?




What is a concept?

- Set of high-level structures deemed appropriate to describe the scene.
- Internal discrete representations learned without any supervision.

$$\mathbf{D}_{i+1} = \operatorname{softmax}(\mathbf{Q}_i \mathbf{K}_i^T) \mathbf{V}_i + \mathbf{D}_i,$$

$$i \in 0..N$$


$$\mathbf{Q}_i = f_{Q_i}(\mathbf{P})$$

$$\mathbf{K}_i = f_{K_i}(\mathbf{IDR})$$

$$\mathbf{V}_i = f_{V_i}(\mathbf{IDR})$$

Degenerates to standard depth discretization if:

 $\mathbf{Q} = f_Q(\mathbf{P}), \ \mathbf{F} = \mathbf{K} || \mathbf{v}$ $\mathbf{D}_0 = \emptyset, \ N = 0, \ R = 0$ $\Rightarrow \mathbf{D} = \operatorname{softmax}(\mathbf{Q}\mathbf{K}^T)\mathbf{v}$

Quantitative results (common benchmarks)

Table 1. NYU-Depth v2 official test set results.

Method	δ_1 \uparrow	RMS ↓	A.Rel↓	
BTS	0.964	2.459	0.057	
AdaBins	0.964	2.360	0.058	
DPT	0.965	2.315	0.059	
NeWCRF	0.974	2.129	0.052	
iDisc	0.977	2.067	0.050	

Quantitative results (common benchmarks)

Table 2. KITTI-Eigen split validation set results.

Method	δ_1 \uparrow	RMS ↓	A.Rel↓	
BTS	0.885	0.392	0.110	
AdaBins	0.903	0.364	0.103	
DPT	0.904	0.357	0.110	
NeWCRF	0.922	0.334	0.095	
iDisc	0.940	0.313	0.086	

Table 3. KITTI official online benchmark results.

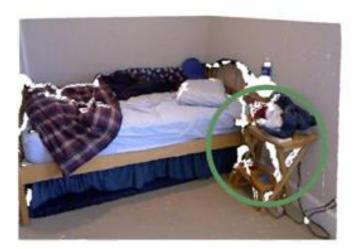
Method	SI _{log} ↓	iRMS ↓	A.Rel ↓	
ViP-DeepLab	10.80	11.77	0.089	
NeWCRF	10.39	11.03	0.084	
PixelFormer	10.29	10.84	0.082	
iDisc	9.89	10.73	0.081	

Quantitative results (proposed benchmarks)

Table 4. Results on Argoverse1.1 proposed split.

Method	$\delta_1 \uparrow$	RMS ↓	A.Rel ↓
BTS	0.780	8.319	0.267
AdaBins	0.750	8.686	0.195
NeWCRF	0.707	9.437	0.232
iDisc	0.821	7.567	0.163

Table 5. Results on DDAD proposed split.


Method	$\delta_1 \uparrow$	RMS ↓	A.Rel↓
BTS	0.757	10.11	0.186
AdaBins	0.748	10.24	0.201
NeWCRF	0.702	10.98	0.219
iDisc	0.809	8.898	0.163

Quantitative results (generalization)

Table 6. Zero-shot testing SI_{log} results.

Table 7. NYU-Surface v2 official test set results.

Method	SUN	Diode	Argoverse	DDAD	Method	11.5° ↑	RMS ↓	Median↓
BTS	14.25	23.78	51.80	40.51	GeoNet	0.484	26.9	11.8
AdaBins	13.20	22.54	52.33	50.71	GeoNet++	0.502	26.7	11.2
NeWCRF	11.27	18.69	46.77	44.24	Bae et al.	0.622	23.5	7.5
iDisc	10.91	18.11	33.35	29.37	iDisc	0.638	22.8	7.3

Ground Truth

AdaBins

NeWCRF

Ours

Ground Truth



Ours



Input image

4 IDR attentions

Depth output

Normals output

Conclusion

- Despite the ill-posed problem, handcrafted biases are limiting.
- Input-dependent representations allow better generalization.
- General architecture for any dense real-valued tasks.

iDisc: Internal Discretization for Monocular Depth Estimation

Luigi Piccinelli, Christos Sakaridis, Fisher Yu

Project page: vis.xyz/pub/idisc

Code and models: github.com/SysCV/idisc

