Decoupling-and-Aggregating for Image Exposure Correction

Yang Wang^{1*}, Long Peng^{1*}, Liang Li², Yang Cao^{1†}, Zheng-Jun Zha¹ ¹ University of Science and Technology of China, Hefei, China ² Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, China *Co-first author. †Corresponding author.

Speaker: Long Peng

Image Exposure Correction

Images captured under improper exposure conditions often suffer from under-exposure or over-exposure problems, as shown on the left.

Image exposure errors can occur due to several factors: errors in measurements of through-thelens metering, hard lighting conditions, dramatic changes in the brightness level of the scene, and errors made by users in the manual mode.

Motivation

The under and over-exposure images often suffer from contrast degradation and detail distortion.

- Contrast degradation will destroy the statistical properties of low-frequency components.
- Detail distortion will disturb the structural properties of high-frequency components

Previous Methods

Deep Retinex Decomposition for Low-Light Enhancement

Learning Multi-Scale Photo Exposure Correction

Proposed Method

Overview of our proposed DAConv. (a) In the training phase, each TConv in baselines is substituted by a DAConv. (b) After training, the DA, CA, a_{da} and a_{ca} are aggregated into a single TConv again by aggregating.

Experiment Results

ME dataset and SICE dataset.

		ME dat	aset [2]		SICE dataset [4]			
	Under-exposure		Over-exposure		Under-exposure		Over-exposure	
	PSNR ↑	SSIM ↑	PSNR ↑	SSIM↑	PSNR ↑	SSIM ↑	PSNR↑	SSIM ↑
RUAS [20]	13.430	0.681	6.390	0.466	7.507	0.246	5.806	0.089
RUAS*	14.867+1.437	0.708+0.027	6.940+0.550	0.486+0.020	8.528+1.021	0.356+0.110	5.938+0 .132	0.137+0.048
Zero-DCE [11]	14.550	0.589	10.400	0.514	15.972	0.653	9.078	0.590
Zero-DCE*	15.067+0.517	0.771+0.182	10.847+0.447	0.710+0.196	16.229+0.257	0.656+0.003	9.315+0.237	0.595+0.005
RetinexNet [30]	12.130	0.621	10.470	0.595	15.239	0.613	16.863	0.638
RetinexNet*	12.208+0.078	0.607-0.014	18.576+8.106	0.794+0.199	15.637+0.398	0.642+0.029	17.009+0.146	0.645+0.007
UNet [26]	18.437	0.821	17.440	0.809	16.036	0.650	17.209	0.664
UNet*	18.524+0.087	0.831+0.010	17.953+0.513	0.822+0.013	16.521+0.485	0.678+0.028	17.239+0.030	0.684+0.020
DRBN [34]	19.740	0.829	19.370	0.832	17.249	0.707	18.275	0.700
DRBN*	20.630+0.890	0.888+0.059	19.100 -0.270	0.878+0.046	17.337+0.088	0.709+0.002	18.896+0.621	0.780+0.080
SID [5]	19.370	0.810	18.830	0.806	17.065	0.692	18.728	0.706
SID*	19.484+0 .114	0.829+0.019	19.015+0.185	0.820+0.014	17.539+0.474	0.724+0.032	18.796+0.068	0.714+0.008
MSEC [2]	20.520	0.813	19.790	0.816	18.291	0.606	17.755	0.626
MSEC*	21.530+1.010	0.859+0.046	21.550+1.760	0.875+0.059	18.949+0.658	0.655+0.049	17.979+0.224	0.660+0.034
ENC [14]	22.720	0.854	22.110	0.852	18.665	0.696	18.974	0.703
ENC*	23.320+0.600	0.909+0.055	22.600+0.490	0.909+0.057	19.072+0.407	0.701+0.005	19.176+0.202	0.707+0.004
FECNet [15]	22.960	0.860	23.220	0.875	18.012	0.685	18.496	0.691
FECNet*	23.150+0.190	0.865+0.005	23.410+0.190	0.880+0.005	18.347+0.335	0.691+0.006	18.893+0.397	0.698+0.007

The bold and **bold*** represent performance training with Vanilla Conv(VC) and proposed DAConv.

The **bold** and bold represent our cost-free improvement compared to the baselines VC and a slight degradation after using DAConv.

	LOLV	[30]	LOL-V2	-R [34]	LOL-V2-S [34]		
	PSNR ↑	SSIM↑	PSNR ↑	SSIM↑	PSNR ↑	SSIM ↑	
ZeroDCE [11]	15.296	0.518	12.382	0.448	16.954	0.810	
ZeroDCE*	16.206+0.910	0.522+0.004	13.445+1.063	0.460+0.012	17.372+0.418	0.820+0.01	
UNet [26]	17.480	0.753	18.449	0.668	18.131	0.843	
UNet*	17.671+0.191	0.764+0.011	18.533+0.084	0.718+0.050	20.079+1.948	0.878+0.035	
DRBN [34]	19.068	0.790	19.421	0.729	21.012	0.895	
DRBN*	19.190+0.122	0.812+0.022	19.855+0.434	0.747+0.018	21.100+0.088	0.899+0.00 4	
SID [5]	18.577	0.789	18.640	0.703	20.801	0.884	
SID*	19.260+0.683	0.812+0.023	18.892+0.252	0.713+0.01	22.267+1.456	0.910+0.026	
MSEC [2]	18.845	0.679	19.031	0.662	19.582	0.705	
MSEC*	20.895+2.050	0.748+0.069	20.192+1.161	0.670+0.008	20.745+1.163	0.813+0.108	
ENC [14]	22.310	0.837	21.004	0.802	21.608	0.887	
ENC*	22.856+0.546	0.843+0.006	21.764+0.760	0.839+0.037	22.337+0.729	0.902+0.015	

LOLV1, LOL-V2-R, and LOL-V2-S datasets.

The bold and **bold*** represent performance training with Vanilla Conv(VC) and proposed DAConv.

The **bold** and bold represent our cost-free improvement compared to the baselines VC and a slight degradation after using DAConv.

Comparison of Enhanced Results

The Comparison of Enhanced Results on SCIE datasets

Feature visualization

Feature maps of Contrast Aware and Detail Aware Unit

ΤΗΑΝΚ ΥΟυ