SGTAPose: Robot Structure Prior Guided Temporal Attention for Camera-to-Robot Pose Estimation from Image Sequence

Yang Tian^{*}, Jiyao Zhang^{*}, Zekai Yin^{*}, Hao Dong[†] CFCS Peking University Tag : WED-AM-066

Camera-to-Robot Pose Estimation from Image Sequence

Inputs:

Image Sequence

Belief Map

Outputs:

Camera-to-Robot 6D Pose

Results: Camera-to-Robot Pose Estimation on Real Data Our Predictions Dream

Results: Camera-to-Robot Pose Estimation on Real Data Our Predictions Dream

Camera-to-Robot Pose Estimation Scheme

Camera-to-Robot Pose Estimation Scheme

Camera-to-Robot Pose Estimation Scheme

Framework: Belief Map Generator

Framework: Feature Alignment

Framework: Temporal Cross Attention

Framework: 3D Refiner

Results: Camera-to-Robot Pose Estimation on Panda 3 August Pixels AUC (%), 6cm

Duan, Kaiwen, et al. "Centernet: Keypoint triplets for object detection." *ICCV* 2019 Zhou, Xingyi, et al. "Tracking objects as points." *ECCV* 2020 Lee, Timothy E., et al. "Camera-to-robot pose estimation from a single image." *ICRA* 2020

Results: Camera-to-Robot Pose Estimation on Panda 3 Aux (%), Appixels AUC (%), 6cm

Duan, Kaiwen, et al. "Centernet: Keypoint triplets for object detection." *ICCV* 2019 Zhou, Xingyi, et al. "Tracking objects as points." *ECCV* 2020 Lee, Timothy E., et al. "Camera-to-robot pose estimation from a single image." *ICRA* 2020

Results: Camera-to-Robot Pose Estimation on
Panda Orbc (%), 12pixelsAUC (%), 6cm

Duan, Kaiwen, et al. "Centernet: Keypoint triplets for object detection." *ICCV* 2019 Zhou, Xingyi, et al. "Tracking objects as points." *ECCV* 2020 Lee, Timothy E., et al. "Camera-to-robot pose estimation from a single image." *ICRA* 2020

Results: Compare with Classic Hand-Eye Calibration

Ablation Study on Camera-to-Robot Pose Estimation

AUC (%), 6cm

Feature Alignment

3D Refiner

- A + Feature Alignment (B)
- **B** + Temporal Cross Attention (C)
- C + 3D Refiner

Static Experiment

Dynamic Experiment #1

Dynamic Experiment #2

Dynamic Experiment #3

Conclusion

- We propose a novel pipeline for **camera-to-robot pose estimation** from **single-view successive frames**.
- With the **robot structure prior** guidance, our method can efficiently fuse the **temporal feature** from different frames.
- Our method demonstrates significant improvements over several datasets, strong dominance compared with traditional hand-eye calibration, and high accuracy and stability in downstream grasping tasks.