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• Tackled 3D pose estimation problem based on 
active and non-invasive acoustic sensing

• Proposed new framework to map acoustic features into 
human pose

Anechoic chamber Classroom



OpenPose [Cao et al. TPAMI2019] RF-Based pose estimation
[Zhao et al. CVPR2018]

• Fail in dark environments or scenes with occlusions
• Privacy issues happen

1. RGB image based models

2. Wifi/RF based models 
• Prohibited use in places with precision instruments exist (e.g., airplanes, hospitals, etc.)

3. Acoustic signal based models
• Requires invasive sensing with body-mounted devices
• Requires sound semantics such as speech or instruments

Limitation of existing work



Technical Contributions
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Proposed pipeline

1. Active acoustic sensing with speakers and ambisonics microphone
2. Feature Extraction: Log-mel spectrogram and Intensity Vector
3. 2D CNN and 1D Time-wise Unet
4. Subject Discriminator Module  (Adversarial Leaning)



1. Active acoustic sensing with speakers and ambisonics microphone
2. Feature Extraction: Log-mel spectrogram and Intensity Vector
3. 2D CNN and 1D Time-wise Unet
4. Subject Discriminator Module  (Adversarial Leaning)
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[1] https://moromisenpy.com/get_impulse_response/
[2] https://zoomcorp.com/ja/jp/handheld-recorders/handheld-recorders/h3-vr-360-audio-recorder/

Technical Contributions

- Repeat TSP signal to capture Room Impulse Response at every moment
- Ambisonics microphone is used to capture 360 degree sounds
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Technical Contributions

- Repeat TSP signal to capture Room Impulse Response at every moment
- Ambisonics microphone is used to capture 360 degree sounds

Two Features
1. Active sensing
- Our model doesn’t use any sound semantics such as speech or instruments
→ Avoid privacy issues

2. Non-invasive sensing
- Subjects don’t need to put on put on any special devices



1. Active acoustic sensing with speakers and ambisonics microphone
2. Feature Extraction: Log-mel spectrogram and Intensity Vector
3. 2D CNN and 1D Time-wise Unet
4. Subject Discriminator Module  (Adversarial Leaning)
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Technical Contributions

These two are used to estimate DoA (Direction of Arrival) and distance to subjects



1. Active acoustic sensing with speakers and ambisonics microphone
2. Feature Extraction: Log-mel spectrogram and Intensity Vector
3. 2D CNN and 1D Time-wise Unet
4. Subject Discriminator Module  (Adversarial Leaning)
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- Two CNN to capture temporal consistency-aware features
- Subject Discriminator module to create subject-invariant features



Experimental Results

Quantitative Results

- Conducted experiments under two settings for 8 subjects

- Our proposed model outperformed prior baseline models in almost all settings
(i) Single Subject (ii) Cross subject 
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Adversarial Leaning Effects
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- Has better result than prior cross entropy loss method
- Reduces feature shift among 3 subjects

[5]Wenjun Jiang, Chenglin Miao, Fenglong Ma, Shuochao Yao,Yaqing Wang, Ye Yuan, Hongfei Xue, Chen Song, Xin Ma, Dimitrios Koutsonikolas, Wenyao Xu, and Lu Su. Towards environment independent 
device free human activity recognition. MobiCom, page 289–304, 2018.



Listening Human Behavior: 
3D Human Pose Estimation with Acoustic Signal

Code and datasets are available: 
https://isogawa.ics.keio.ac.jp/research_project/acoustic_3dpose.html

- Showed for the first time it is possible to obtain human pose with active and 
non-invasive acoustic sensing

- Proposed new framework to map acoustic features into human pose

- Outperformed previous work with mel spectrogram, intensity vector, and 
subject discriminator module

- Created new datasets in an anechoic chamber and classroom environment


