THU-AM-093

Anchor3DLane: Learning to Regress 3D Anchors for Monocular 3D Lane Detection

Shaofei Huang^{1,2} Zhenwei Shen^{3*} Zehao Huang³ Zi-han Ding^{4,5} Jiao Dai^{1,2} Jizhong Han^{1,2} Naiyan Wang³ Si Liu^{4,5} (*Work done while at TuSimple)

¹IIE, CAS ²UCAS ³TuSimple ⁴IAI, BUAA ⁵HII, BUAA

Code available at: https://github.com/tusen-ai/Anchor3DLane

Preview

Anchor3DLane: Learning to Regress 3D Anchors for Monocular 3D Lane Detection Shaofei Huang^{1,2} Zhenwei Shen^{3*} Zehao Huang³ Zi-han Ding^{4,5} Jiao Dai^{1,2} Jizhong Han^{1,2} Naiyan Wang³ Si Liu^{4,5}

¹IIE, CAS ²SCS, UCAS ³TuSimple ⁴IAI, BUAA ⁵HII, BUAA (*work done in TuSimple)

Motivation

- BEV-based methods (a) warp FV images/features into BEV space with IPM, which relies on the strict assumption of flat ground. Useful height information and context information are also lost inevitably in BEV representations.
- Non-BEV method (b) decomposes 3D lane detection task into 2D lane segmentation and dense depth estimation tasks and lacks structured representations of 3D lanes.
- Our Anchor3DLane (c) directly defines anchors in 3D space and regresses 3D lanes directly from FV without introducing BEV. 3D lane anchors are projected to the FV features to extract their features which contain both good structural and context information.

Representations of 3D Lane Anchor

- > A 3D lane / anchor is described by 3D points with N uniformly sampled y-coordinates {y^k}, k ∈ [1, N].
 > Lane point of the *i*-th lane: p_i^k = (x_i^k, y^k, z_i^k, vis_i^k), k ∈
 - [1,N];Another point of the *i* th another: $\mathbf{g}_{i}^{k} = (\mathbf{x}_{i}^{k}, \mathbf{y}^{k}, \mathbf{g}_{i}^{k})$ is the second seco
- ► Anchor point of the *j*-th anchor: $\mathbf{q}_j^k = (x_j^k, y^k, z_j^k), k \in [1, N].$

Anchor3DLane

To obtain features of 3D anchors, we first project them into the plane of FV feature using camera parameters:

- The feature of each anchor is obtained through bilinear interpolation around the projected points on the FV feature.
- A classification head and a regression head are appended after each anchor features to predict its category, x/z offset and visibilities for each anchor point.
- The lane predictions can also serve as new 3D anchors for iterative regression.

Temporal Context Modeling

- Anchor3DLane can be further extended to multiframe 3D lane detection to incorporate temporal context for larger perception range.
- 3D points in the *t*-th frame's ground coordinate system can be transformed into the *t'*-th frame's ground coordinate system by relative transformation matrix to gather anchor features from previous frame:

$$\begin{bmatrix} x_{t'} \\ y_{t'} \\ z_{t'} \end{bmatrix} = \mathbf{T}_{g(t) \to g(t')} \begin{bmatrix} x_t \\ y_t \\ z_t \\ 1 \end{bmatrix}$$

Cross-frame attention is adopted for anchor feature fusion.

Equal-Width Constraint

we leverage the geometry property of 3D lanes, i.e., lanes in 3D space are nearly parallel with each other, and formulate it as an equal-width constraint to adjust the x-coordinates of lane predictions.

► Given $\{x_j^k\}_{k=1}^N$ and $\{x_{j'}^k\}_{k=1}^N$ as x-coordinates of two lanes and $\Delta \mathbf{x}^k$ as adjustment to \mathbf{x}^k , the objective function is formulated as:

$$\begin{split} \min_{\{\tilde{\Delta}\mathbf{x}_{j}\}_{j\in\{1,Q\}}} & \frac{1}{Q(Q-1)} \sum_{j=1}^{Q} \sum_{j'=1,j'\neq j}^{Q} \mathcal{L}(\mathbf{w}_{j,j'}) \\ &+ \alpha \frac{1}{Q} \sum_{j=1}^{Q} \|\tilde{\Delta}\mathbf{x}_{j}\|_{2}, \\ & w_{j,j'}^{k} = |\cos\theta_{j}^{k}(x_{j}^{k} + \tilde{\Delta}x_{j}^{k} - x_{j'}^{k} - \tilde{\Delta}x_{j'}^{k})|, \\ & \mathcal{L}(\mathbf{w}_{j,j'}) = \sum_{k=1}^{N} |w_{j,j'}^{k} - \frac{1}{N} \sum_{k'=1}^{N} w_{j,j'}^{k'}|. \end{split}$$

Experiments

Extensive ablation studies have shown the effectiveness of each components of our method.

Comparison with BEV feature sampling				Eq	ual-V	/idth (Constrair	nt (EWC	:)			
Input	Feat	F1(%)	x err/C(m)	x err/F(m	z err/C(m)	z err/F(m)	M	rthod	F1(%)	x err/C(m)	x err/F(m	1
BEV	BEV	47.6	0.466	0.421	0.119	0.170	wle	EWC	54.8	0 318	0 349	<u></u>
FV	BEV	47.6	0.443	0.446	0.118	0.160	with	Enve	55.0	0.310	0.337	
FV	FV	53.1	0.300	0.31	0.103	0.139	w/	Ewc	55.0	0.318	0.337	_
			Iterativ	e step	s			Т	rainin	g Frame	s	
Iter	F1(%)) x err	/C(m) x e	rr/F(m)	z err/C(m)	z err/F(m)	Frame Rang	pe F1(%) x err/C	(m) x err/F(m) z ern/C(m)	z err/F(m
1	54.8	0.	318	0.349	0.101	0.147	3 frames	55.0	0.30	6 0.326	0.099	0.148
2	56.3	0.3	287	0.335	0.103	0.152	5 frames	55.2	0.30	8 0.330	0.099	0.145
3	57.0	0.	287	0.327	0.104	0.148	7 frames	56.1	0.31	2 0.335	0.101	0.150

Quantitative and qualitative results on popular benchmarks show the superiority of our method.

Scene	Method	AP(%)↑	F1(%)↑	x err/C(m)↓	x err/F(m)↓	$z err/C(m) \downarrow$	z err/F(m)
	3DLaneNet [7]	89.3	86.4	0.068	0.477	0.015	0.202
	Gen-LaneNet [8]	90.1	88.1	0.061	0.496	0.012	0.214
	CLG0 [20]	94.2	91.9	0.061	0.361	0.029	0.250
Balanced Scene	PersFormer [5]		92.9	0.054	0.356	0.010	0.234
	GP [16]	93.8	91.9	0.049	0.387	0.008	0.213
	Anchor3DLane (Ours)	97.2	95.6	0.052	0.306	0.015	0.223
	Anchor3DLane†(Ours)	97.1	95.4	0.045	0.300	0.016	0.223
	3DLaneNet [7]	74.6	72.0	0.166	0.855	0.039	0.521
	Gen-LaneNet [8]	79.0	78.0	0.139	0.903	0.030	0.539
	CLGo [20]	88.3	86.1	0.147	0.735	0.071	0.609
Rare Subset	PersFormer [5]		87.5	0.107	0.782	0.024	0.602
	GP [16]	85.2	83.7	0.126	0.903	0.023	0.625
	Anchor3DLane (Ours)	96.9	94.4	0.094	0.693	0.027	0.579
	Anchor3DLane [†] (Ours)	95.9	94.4	0.082	0.699	0.030	0.580
	3D-LaneNet [7]	74.9	72.5	0.115	0.601	0.032	0.230
	Gen-LaneNet [8]	87.2	85.3	0.074	0.538	0.015	0.232
	CLGo [20]	89.2	87.3	0.084	0.464	0.045	0.312
Visual Variations	PersFormer [5]	-	89.6	0.074	0.430	0.015	0.266
	GP [16]	92.1	89.9	0.060	0.446	0.011	0.235
	Anchor3DLane (Ours)	93.6	91.4	0.068	0.367	0.020	0.232
	Anchor3DLane† (Ours)	92.5	91.8	0.047	0.327	0.019	0.219

Method	F1(%)↑	Cate Acc(%)↑	x err/C(m)↓	x err/F(m)↓	z err/C(m) ↓	z err/F(m) ↓
3D-LaneNet [7]	44.1	-	0.479	0.572	0.367	0.443
GenLaneNet [8]	32.3		0.591	0.684	0.411	0.521
PersFormer [5]	50.5	92.3	0.485	0.553	0.364	0.431
Anchor3DLane (Ours)	53.1	90.0	0.300	0.311	0.103	0.139
Anchor3DLane† (Ours)	53.7	90.9	0.276	0.311	0.107	0.138
Anchor3DLane-T† (Ours)	54.3	90.7	0.275	0.310	0.105	0.135

Motivation

BEV-based methods

- IPM relies on the assumption of flat ground, which does not always hold true
- Useful height and context information above the road surface are lost after IPM

Non-BEV method

- Lacks structured representations of 3D lanes
- Performances lag behind BEV-based methods

Our Anchor3DLane

- Defines 3D lane anchors for structural representation of 3D lanes
- Retains context information by projecting 3D anchors and sampling anchor features from original FV features
- Easily extended to iterative regression and multi-frame settings

Representations of 3D Lanes and 3D Anchors

A 3D lane / anchor is described by 3D points with N uniformly sampled y-coordinates $\{y^k\}, k \in [1, N]$.

Representation of 3D Lanes

- ➤ The *i*-th lane $G_i = \{\mathbf{p}_i^k\}, k \in [1, N]$
- > The *k*-th point of $G_i : \mathbf{p}_i^k = (x_i^k, y^k, z_i^k, vis_i^k)$

Representation of 3D Anchors

- > Starting from $(x_s, 0, 0)$, pitch θ , yaw ϕ
- ➤ The *j*-th anchor $A_j = \{q_i^k\}, k \in [1, N]$
- > The *j*-th point of $A_j : \mathbf{q}_j^k = (x_j^k, y^k, z_j^k)$

Anchor3DLane

Anchor Projection and Feature Sampling

Projecting $q^k = (x^k, y^k, z^k)$ to $q'^k = (u^k, v^k)$ $\begin{bmatrix} \tilde{u}^k \\ \tilde{v}^k \\ d^k \end{bmatrix} = \mathbf{KT}_{g \to c} \begin{bmatrix} x^k \\ y^k \\ z^k \\ 1 \end{bmatrix},$ $u^k = W_f / W \cdot \frac{\tilde{u}^k}{d^k},$ $v^k = H_f / H \cdot \frac{\tilde{v}^k}{d^k},$ Sampling anchor feature as $\{\mathbf{E} \in \mathbf{k}, \mathbf{k}\}^N$

Sampling anchor feature as $\left\{ F_{(u^k, v^k)} \right\}_{k=1}^{N}$

3D Lane Prediction

- ➢ For each anchor, we have:
 - ➢ Classification probabilities c_j ∈ \mathbb{R}^L
 - $\succ \text{ Offsets } (\Delta \mathbf{x}_j \in \mathbb{R}^N, \Delta \mathbf{z}_j \in \mathbb{R}^N) = \{(\Delta x_j^k, \Delta z_j^k)\}_{k=1}^N$
 - > Visibility $vis_j = \{vis_j^k\}_{k=1}^N$
- > The *j*-th 3D proposal is generated as $P_j = (c_j, x_j + \Delta x_j, y, z_j + \Delta z_j, vis_j)$
- The generated 3D proposals can also be used as curve anchors for iterative regression

Loss functions of Anchor3DLane

Positive samples are selected by distance metric between ground truth and anchors:

$$D(\mathbf{G}_{i}, \mathbf{A}_{j}) = \frac{\sum_{k=1}^{N} vis_{i}^{k} \cdot \sqrt{(x_{i}^{k} - x_{j}^{k})^{2} + (z_{i}^{k} - z_{j}^{k})^{2}}}{\sum_{k=1}^{N} vis_{i}^{k}}.$$

Overall loss function:

$$\begin{split} \mathcal{L}_{cls} &= -\sum_{j=1}^{M} \sum_{l=1}^{L} \alpha^{l} (1 - c_{j}^{l})^{\gamma} \log c_{j}^{l}, \\ \mathcal{L}_{reg} &= \sum_{i=1}^{M_{p}} \sum_{k=1}^{N} (\|\hat{vis}_{i}^{k} \cdot (x_{i}^{k} + \Delta x_{i}^{k} - \hat{x}_{i}^{k})\|_{1} \\ &+ \sum_{i=1}^{M_{p}} \sum_{k=1}^{N} \|\hat{vis}_{i}^{k} \cdot (z_{i}^{k} + \Delta z_{i}^{k} - \hat{z}_{i}^{k})\|_{1}) \\ &+ \sum_{i=1}^{M_{p}} \sum_{k=1}^{N} \|\hat{vis}_{i}^{k} - vis_{i}^{k}\|_{1}. \\ \mathcal{L} &= \lambda_{cls} \mathcal{L}_{cls} + \lambda_{reg} \mathcal{L}_{reg}. \end{split}$$

Temporal Context Modeling

- Anchor3DLane can be further extended to multi-frame 3D lane detection to incorporate temporal context for larger perception range
- > 3D point (x_t, y_t, z_t) for the *t*-th frame's can be transformed into the *t'*-th frame's ground coordinate system by relative transformation matrix to gather anchor features from previous frame $T_{g(t)\to g(t')}$:

$$egin{bmatrix} x_{t'} \ y_{t'} \ z_{t'} \end{bmatrix} = \mathbf{T}_{g(t)
ightarrow g(t')} egin{bmatrix} x_t \ y_t \ z_t \ 1 \end{bmatrix},$$

 \succ Cross-frame attention is then adopted to fuse sampled anchor features from the *t*-th frame and *t'*-th frame.

Equal-Width Constraint

w

- The geometry property of 3D lanes, i.e., lanes in 3D space are nearly parallel with each other can be formulated as an equal-width constraint to adjust the x-coordinates of lane predictions.
- Siven $\{x_j^k\}_{k=1}^N$ and $\{x_{j'}^k\}_{k=1}^N$ as x-coordinates of two lanes and $\widetilde{\Delta} \mathbf{x}^k$ as adjustment to \mathbf{x}^k , the objective function is formulated as:

$$egin{aligned} &k_{j,j'} = |\cos heta_j^k (x_j^k + ilde{\Delta} x_j^k - x_{j'}^k - ilde{\Delta} x_{j'}^k)|, \ &\mathcal{L}(\mathbf{w}_{j,j'}) = \sum_{k=1}^N |w_{j,j'}^k - rac{1}{N} \sum_{k'=1}^N w_{j,j'}^{k'}|. \ &\lim_{\{ ilde{\Delta} \mathbf{x}_j\}_{j \in [1,Q]}} rac{1}{Q(Q-1)} \sum_{j=1}^Q \sum_{j'=1,j'
eq j}^Q \mathcal{L}(\mathbf{w}_{j,j'}) \ &+ lpha rac{1}{Q} \sum_{j=1}^Q \| ilde{\Delta} \mathbf{x}_j\|_2, \end{aligned}$$

> The first term restricts the width to be consistent and the second term serves as a regularization

Ablation Study

Input	Feat	F1(%)	x err/C(m)	x err/F(m)	z err/C(m)	z err/F(m)
BEV	BEV	47.6	0.466	0.421	0.119	0.170
FV	BEV	47.6	0.443	0.446	0.118	0.160
FV	FV	53.1	0.300	0.31	0.103	0.139

Table 1: Comparison with BEV feature sampling

Table 2: Iterative regression

Iter	F1(%)	x err/C(m)	x err/F(m)	z err/C(m)	z err/F(m)
1	54.8	0.318	0.349	0.101	0.147
2	56.3	0.287	0.335	0.103	0.152
3	57.0	0.287	0.327	0.104	0.148

Table 3: Temporal integration method

Method	F1(%)	x err/C(m)	x err/F(m)	z err/C(m)	z err/F(m)
w/o Temporal	54.8	0.318	0.349	0.101	0.147
Linear Fusion	54.9	0.322	0.343	0.102	0.148
Weighted Sum	55.8	0.320	0.346	0.101	0.150
Attention	55.2	0.308	0.330	0.099	0.145

 Table 4: Equal-Width Constraint (EWC)

Method	F1(%)	x err/C(m)	x err/F(m)
w/o EWC	54.8	0.318	0.349
w/ EWC	55.0	0.318	0.337

Quantitative Results

Apol	lloSim

Scene	Method	AP(%) ↑	F1(%) ↑	x err/C(m) \downarrow	x err/F(m) \downarrow	z err/C(m) \downarrow	z err/F(m) \downarrow
	3DLaneNet [7]	89.3	86.4	0.068	0.477	0.015	0.202
	Gen-LaneNet [8]	90.1	88.1	0.061	0.496	0.012	0.214
	CLGo [20]	94.2	91.9	0.061	0.361	0.029	0.250
Balanced Scene	PersFormer [5]	-	92.9	0.054	0.356	0.010	0.234
	GP [16]	93.8	91.9	0.049	0.387	0.008	0.213
	Anchor3DLane (Ours)	97.2	95.6	0.052	0.306	0.015	0.223
	Anchor3DLane ⁺ (Ours)	97.1	95.4	0.045	0.300	0.016	0.223
	3DLaneNet [7]	74.6	72.0	0.166	0.855	0.039	0.521
	Gen-LaneNet [8]	79.0	78.0	0.139	0.903	0.030	0.539
	CLGo [20]	88.3	86.1	0.147	0.735	0.071	0.609
Rare Subset	PersFormer [5]	-	87.5	0.107	0.782	0.024	0.602
	GP [16]	85.2	83.7	0.126	0.903	0.023	0.625
	Anchor3DLane (Ours)	96.9	94.4	0.094	0.693	0.027	0.579
	Anchor3DLane [†] (Ours)	95.9	94.4	0.082	0.699	0.030	0.580
	3D-LaneNet [7]	74.9	72.5	0.115	0.601	0.032	0.230
	Gen-LaneNet [8]	87.2	85.3	0.074	0.538	0.015	0.232
	CLGo [20]	89.2	87.3	0.084	0.464	0.045	0.312
Visual Variations	PersFormer [5]	-	89.6	0.074	0.430	0.015	0.266
	GP [16]	92.1	89.9	0.060	0.446	0.011	0.235
	Anchor3DLane (Ours)	93.6	91.4	0.068	0.367	0.020	0.232
	Anchor3DLane [†] (Ours)	92.5	91.8	0.047	0.327	0.019	0.219

Table 1. Comparison with state-of-the-art methods on ApolloSim dataset with three different split settings. "C" and "F" are short for close and far respectively. † denotes iterative regression.

CD Error(m)↓
0.127
0.121
0.098
0.074
0.064
0.060

ONCE-3DLane

Table 4. Comparison with state-of-the-art methods on ONCE-3DLanes validation set. Results under $\tau_{CD} = 0.3$ are displayed here. \dagger denotes iterative regression. "P" and "R" are short for precision and recall respectively.

OpenLane

Method	F1(%) ↑	Cate Acc(%)↑	x err/C(m) \downarrow	x err/F(m) \downarrow	z err/C(m) \downarrow	z err/F(m)↓
3D-LaneNet [7]	44.1	201 ² (10)	0.479	0.572	0.367	0.443
GenLaneNet [8]	32.3	-	0.591	0.684	0.411	0.521
PersFormer [5]	50.5	92.3	0.485	0.553	0.364	0.431
Anchor3DLane (Ours)	53.1	90.0	0.300	0.311	0.103	0.139
Anchor3DLane [†] (Ours)	53.7	90.9	0.276	0.311	0.107	0.138
Anchor3DLane-T [†] (Ours)	54.3	90.7	0.275	0.310	0.105	0.135

Table 2. Comparison with state-of-the-art methods on OpenLane validation set. † denotes iterative regression. Anchor3DLane-T denotes incorporating multi-frame information. "Cate Acc" means category accuracy.

Method	All	Up & Down	Curve	Extreme Weather	Night	Intersection	Merge & Split
3D-LaneNet [7]	44.1	40.8	46.5	47.5	41.5	32.1	41.7
GenLaneNet [8]	32.3	25.4	33.5	28.1	18.7	21.4	31.0
PersFormer [5]	50.5	42.4	55.6	48.6	46.6	40.0	50.7
Anchor3DLane (Ours)	53.1	45.5	56.2	51.9	47.2	44.2	50.5
Anchor3DLane [†] (Ours)	53.7	46.7	57.2	52.5	47.8	45.4	51.2
Anchor3DLane-T [†] (Ours)	54.3	47.2	58.0	52.7	48.7	45.8	51.7

Table 3. Comparison with state-of-the-art methods on OpenLane validation set. F1 score is presented for each scenario. † denotes iterative regression. Anchor3DLane-T denotes incorporating multi-frame information.

Qualitative Results

Thanks for Listening!

Code is available at: <u>https://github.com/tusen-ai/Anchor3DLane</u>

