#### **GENIE: Show Me the Data for Quantization**

#### (WED-AM-366)

Yongkweon Jeon\*, Chungman Lee\*, Ho-young Kim\*

Samsung Research

Correspondence to: dragwon.jeon@samsung.com

Presenter: Ho-young Kim June, 21<sup>st</sup>, 2023





## **GENIE: The novel approach for Zero-shot Quantization**

- Zero-shot quantization (ZSQ): Quantization method using only synthetic data instead of the real data
  - Distill-based approach (DBA)
  - Generator-based approach (GBA)
- Unlike most former approaches, we adopt PTQ rather than QAT as a quantization scheme, and it improves ZSQ performance significantly within much shorter time.





**GENIE-D** overview

Samsung Research



> Distill fake data which meets batch normalization statistics (BNS)  $\mu_l$  and  $\sigma_l$  of the pretrained model

$$\mathcal{L}_{BNS}^{D} = \sum_{l=0}^{L} (\|\boldsymbol{\mu}_{l}^{S} - \boldsymbol{\mu}_{l}\|^{2} + \|\boldsymbol{\sigma}_{l}^{S} - \boldsymbol{\sigma}_{l}\|^{2})$$



**New Features in GENIE-D** 

Samsung Research



Learnable latent vector z

#### Swing Convolution



#### Learnable latent vector z



- Inspired by Generative Latent Optimization (GLO) (Bojanowski et al., 2018)
  - No need to fit to random noises  $\rightarrow$  Stable convergence of generator (see Fig A5)
  - Exploring in the latent space → Efficient distillation of the pretrained model's knowledge



# **Swing Convolution**



- Replace all *n*-strided convolution layers  $\geq$ with swing convolution layers of same stride when only synthesizing the dataset
  - Decreasing information loss
  - Reducing checkerboard artifact



(a) Distilling without *swing conv* (b) Distilling with *swing conv* 

# The Mechanism of Swing Convolution

Samsung Research



(a) Reflection padding & random crop.

#### Swing convolution

- Randomly select feature maps to be convolved at each step
  - Padding is required for the margin of randomness
- Every pixel can deliver information due to the stochasticity.
- Since random selection is done uniformly, all pixels are updated evenly after enough steps.



(b) 2-stride convolution (conv2d(kernel\_size=1, stride=2)).

➢ Normal *n*-strided convolution

7

- Convolve only the information of a fixed feature map in any step
- There are unreachable pixels, which never provide information for data distillation.
- Pixels are updated unevenly, and this incurs checkerboard artifacts (Odena et al., 2016)

# **GENIE-M: Sub-module for PTQ**

- Quantization is a task that maps parameters to proper grid points on the range set by a step size s with the minimal performance loss.
- ➤ In AdaRound (Nagel et al., 2020), a PTQ scheme on which GENIE-M is based, the authors optimize only softbit v ∈ [0, 1] to find a mapping for higher accuracy, but use a fixed step size at initialized.
  - They pointed out that the joint optimization of s and v is not trivial.



# The Algorithm of GENIE-M

 $\succ$  Enable joint optimization by releasing the dependency between s and v (line 3)



Example. Resolution of the conflict

#### Algorithm 2 CLASS GENIE-M

- 1: **def**: \_\_INIT\_\_(self, *W*, *bits*)
- 2: self.s  $\leftarrow$  SetStepSize(W, bits)

3: self.
$$\boldsymbol{B} \leftarrow \operatorname{clip}(\left\lfloor \frac{\boldsymbol{W}}{\operatorname{self.s}} \right\rfloor, n, p).\operatorname{detach}()$$

4: self.
$$V \leftarrow \frac{W}{self.s} - self.B$$

5: def: FORWARD(self)
6: return self.s×(self.B+self.V)



 $\geq$ 

|           | #Bits | Ablation Settings |              |              |              | PacNat 18  | PasNat 50  | MobileNetV2     | MpacNet 1.0        |
|-----------|-------|-------------------|--------------|--------------|--------------|------------|------------|-----------------|--------------------|
|           | (W/A) | Swing             | Generator    | z            | Genie-M      | Resider-16 | Residet-50 | WIODIICINCI V Z | 111111111111111111 |
| FP        | 32/32 |                   |              |              |              | 71.08      | 77.00      | 72.49           | 73.52              |
| M1        |       |                   |              |              |              | 69.19      | 74.87      | 66.22           | 58.52              |
| M2        |       |                   |              |              | $\checkmark$ | 69.25      | 74.94      | 66.25           | 58.82              |
| M3        |       | $\checkmark$      |              |              |              | 69.49      | 75.43      | 67.80           | 63.98              |
| M4        | 4/4   |                   | $\checkmark$ |              |              | 69.17      | 74.96      | 66.41           | 64.63              |
| M5        |       |                   | $\checkmark$ | $\checkmark$ |              | 69.58      | 75.39      | 67.92           | 66.15              |
| M6        |       | $\checkmark$      | $\checkmark$ | $\checkmark$ |              | 69.62      | 75.47      | 68.28           | 66.55              |
| M7        |       | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ | 69.66      | 75.59      | 68.38           | 66.94              |
| M1        |       |                   |              |              |              | 61.96      | 66.72      | 36.58           | 31.22              |
| M2        |       |                   |              |              | $\checkmark$ | 62.62      | 66.95      | 37.12           | 32.45              |
| M3        |       | $\checkmark$      |              |              |              | 63.74      | 69.44      | 44.00           | 34.64              |
| M4        | 2/4   |                   | $\checkmark$ |              |              | 60.13      | 65.28      | 34.92           | 35.50              |
| M5        |       |                   | $\checkmark$ | $\checkmark$ |              | 64.06      | 70.16      | 47.96           | 45.47              |
| <b>M6</b> |       | $\checkmark$      | $\checkmark$ | $\checkmark$ |              | 64.34      | 69.87      | 49.89           | 47.34              |
| <b>M7</b> |       | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ | 65.10      | 69.99      | 53.38           | 48.21              |

Table 2. Result of the ablation study on CNN Models (top-1 accuracy (%))



# **Experimental Results: CNN**

CONTRACT 1 1 T (

(01))

T 11

| Table 5. Evaluation of CNN Models I (top-1 accuracy (%)) |                            |                |           |                    |             |             |
|----------------------------------------------------------|----------------------------|----------------|-----------|--------------------|-------------|-------------|
|                                                          | Methods                    | #Bits<br>(W/A) | ResNet-18 | ResNet-50          | MobileNetV2 | MnasNet-1.0 |
|                                                          | Full Prec.                 | 32/32          | 71.08     | 77.00              | 72.49       | 73.52       |
| Single Model                                             | ZeroQ+BRECQ <sup>‡</sup>   |                | 69.32     | 73.73              | 49.83       | 52.04       |
|                                                          | KW+Brecq <sup>‡</sup>      |                | 69.08     | 74.05              | 59.81       | 55.48       |
|                                                          | IntraQ <sup>†</sup> +BRECQ |                | 68.77     | 68.16              | 63.78       | -           |
|                                                          | Qimera+BRECQ               |                | 67.86     | 72.90              | 58.33       | -           |
|                                                          | GENIE-D+BRECQ [ours]       |                | 69.70     | 74.89              | 64.68       | 55.42       |
|                                                          | GENIE [ours]               | 4/4            | 69.66     | 75.59              | 68.38       | 66.94       |
| Mix*                                                     | MixMix+BRECQ <sup>‡</sup>  |                | 69.46     | 74.58              | 64.01       | 57.87       |
|                                                          | GENIE-D+BRECQ [ours]       |                | 69.71     | 74.89              | 64.97       | 51.25       |
|                                                          | GENIE [ours]               |                | 69.77     | 75.41              | 68.70       | 67.45       |
| Real                                                     | QDROP <sup>§</sup>         |                | 69.62     | 75.45              | 68.84       |             |
|                                                          | GENIE-M [ours]             |                | 69.81     | 75.61              | 69.23       | 68.29       |
| Single Model                                             | ZeroQ+BRECQ                |                | 61.63     | 64.16 <sup>‡</sup> | 34.39       | 13.83       |
|                                                          | KW+Brecq <sup>‡</sup>      |                | -         | 57.74              | -           | -           |
|                                                          | IntraQ <sup>†</sup> +BRECQ |                | 55.39     | 44.78              | 35.38       | -           |
|                                                          | Qimera+BRECQ               |                | 47.80     | 49.13              | 3.73        | -           |
|                                                          | GENIE-D+BRECQ [ours]       |                | 64.24     | 69.38              | 45.28       | 29.72       |
|                                                          | GENIE [ours]               | 2/4            | 65.10     | 69.99              | 53.38       | 48.21       |
| Mix*                                                     | $MixMix+BRECQ^{\ddagger}$  |                |           | 66.49              |             |             |
|                                                          | GENIE-D+BRECQ [ours]       |                | 64.91     | 69.96              | 42.19       | 31.22       |
|                                                          | GENIE [ours]               |                | 65.44     | 70.62              | 53.36       | 49.65       |
| Real                                                     | QDROP <sup>§</sup>         |                | 65.25     | 70.65              | 54.22       |             |
|                                                          | GENIE-M [ours]             |                | 66.23     | 71.06              | 57.74       | 55.57       |

#### Table 4. Evaluation of CNN Models II (top-1 accuracy (%))

| Methods             |     | ResNet-18 | ResNet-50 | MobileNetV2 |
|---------------------|-----|-----------|-----------|-------------|
| Full Prec.          |     | 71.47     | 77.73     | 73.03       |
| GDFQ+AIT*           |     | 65.51     | 64.24     | 65.39       |
| Qimera+AIT*         |     | 66.83     | 67.63     | 66.81       |
| ARC+AIT*            |     | 65.73     | 68.27     | 66.47       |
| ZAQ†                | 4/4 | -         | 70.06     | -           |
| IntraQ <sup>‡</sup> |     | 66.47     | -         | 65.10       |
| Genie-D+AIT         |     | 66.91     | -         | -           |
| GENIE [ours]        |     | 68.69     | 74.21     | 69.59       |
| GDFQ+AIT            |     | 0.10      | 0.10      | 0.11        |
| Qimera+AIT          |     | 0.10      | 0.10      | 0.12        |
| ARC+AIT             |     | 0.11      | 0.10      | 0.13        |
| IntraQ              | 2/4 | 0.14      | -         | 0.17        |
| GENIE-D+AIT         |     | 0.50      | -         | -           |
| GENIE [ours]        |     | 58.73     | 54.83     | 45.84       |
|                     |     |           |           | 13          |



**#Bits** Methods ResNet-18 MnasNet-2.0 ResNet-50 MobileNetV2 RegNetX-600M RegNetX-3.2G (W/A)Full Prec. 77.00 32/32 71.08 72.49 73.71 78.36 76.68 AdaRound+QDROP<sup>†</sup> 67.89 70.62 76.33 72.39 69.10 75.03 GENIE-M+No Drop [ours] 4/4 69.13 74.93 68.22 70.87 76.50 72.68 75.21 68.65 71.13 73.37 **GENIE-M+QDROP** [ours] 69.35 76.75 AdaRound+No Drop<sup>†</sup> 51.61 60.00 64.16 69.60 61.52 70.29 AdaRound+ODROP<sup>†</sup> 70.08 52.92 63.10 70.95 62.36 64.66 2/4GENIE-M+No Drop [ours] 65.27 70.39 55.55 63.66 71.79 62.76 GENIE-M+QDROP [ours] 65.77 70.51 56.38 64.55 72.35 64.10 AdaRound+ODROP<sup>†</sup> 71.07 54.27 71.43 63.47 65.56 64.53 GENIE-M+No Drop [ours] 3/3 65.50 71.08 55.28 64.37 72.05 62.17 GENIE-M+QDROP [ours] 71.61 57.54 65.68 72.72 64.80 66.16 AdaRound+No Drop<sup>†</sup> 46.64 39.76 9.51 47.90 4.55 25.52 AdaRound+QDROP<sup>†</sup> 51.14 54.74 8.46 38.90 52.36 22.70 2/2 GENIE-M+No Drop [ours] 40.97 19.60 50.52 51.80 12.63 34.03 GENIE-M+ODROP [ours] 53.71 56.71 17.10 42.00 55.31 28.56





Samsung Research

# Conclusion

- We propose a novel zero-shot quantization approach, both image distillation method and PTQ scheme, for CNN, called GENIE.
  - GENIE-D successfully synthesizes the meaningful data by adopting GLO and swing convolution
  - GENIE-M Jointly optimizes both quantization parameters as learnable parameters
- We have achieved a new state-of-the-art accuracy of zero-shot quantization on various CNN models.







# **Thank You**

Correspondence to: dragwon.jeon@samsung.com

