
LayoutDM: Discrete Diffusion Model
for Controllable Layout Generation

Naoto Inoue Kotaro Kikuchi Mayu Otani
Edgar Simo-Serra Kota Yamaguchi

WED-AM-185

2

Layout

= Simple yet essential interface to understand & control visual design

: image 
: text 
: embellishment 

3

Controllable Layout Generation

Our work: solve a broad range of tasks in a single model

4

● A discrete diffusion model tamed for layout generation

LayoutDM

5

● A discrete diffusion model tamed for layout generation
● Training-free algorithm to inject various conditions during inference

LayoutDM

6

LayoutDM Results

Input:
category Output Input:

noisy layout Output

7

● A set of category (1-dim.) + positional info. (4-dim. e.g., xywh)
● Recent trend: layout as a sequence of discrete variables (c.f., text)

What is Layout?

image 
text 

logo 

Visualization

[ 
[“image”, 0.3, 0.5, 0.25, 0.9], 
[“text”, 0.7, 0.35, 0.25, 0.15], 
[“text”, 0.7, 0.6, 0.25, 0.4], 
[“logo”, 0.85, 0.95, 0.2, 0.04], 

] 

Data

8

● = diffusion models for modeling categorical variables (e.g., text)
● Corruption: a token is stochastically replaced with another in vocabulary

Discrete Diffusion Models [Austin+, NeurIPS’21]

https://arxiv.org/abs/2107.03006

9

Adapting Discrete Diffusion Models for Layout

10

● [PAD] token to enable variable length generation

Adapting Discrete Diffusion Models for Layout

11

● [PAD] token to enable variable length generation

Adapting Discrete Diffusion Models for Layout

● Modality-wise corruption process

12

How to Feed Conditions during Inference?

13

● Hard condition: masking
○ e.g., “i-th element’s category is C”

How to Feed Conditions during Inference?

14

● Hard condition: masking
○ e.g., “i-th element’s category is C”

How to Feed Conditions during Inference?

● Soft condition: logit adjustment
○ e.g., “an element at the top”, “an element bigger than another”

15

Inject soft condition as a prior term

Logit Adjustment

16

Inject soft condition as a prior term

Logit Adjustment

How to implement a prior?
● Hard coding (e.g., refinement task)
● Gradients from loss functions w.r.t. the prediction (e.g., relationship task)

17

● No fixed generation order unlike auto-regressive models
○ c.f., LayoutTransformer [Gupta+, ICCV’21]

● Flexibly changing the number of elements to be generated
○ c.f., BLT [Kong+, ECCV’22]

● Incorporating both hard and soft conditions
○ c.f., NDN [Lee+, ECCV’20]

Advantages over Existing Methods

https://arxiv.org/abs/2006.14615
https://arxiv.org/abs/2112.05112
https://arxiv.org/abs/1912.09421

18

Results in Rico [Deka+, UIST’17]

https://dl.acm.org/doi/10.1145/3126594.3126651

19

Results in PubLayNet [Zhong+, ICDAR’19]

https://arxiv.org/abs/1908.07836

20

Quantitative Evaluation (in category + size → position)

LayoutDM achieves the best speed-quality tradeoff

21

Quantitative Evaluation (in category + size → position)

Better

Worse

LayoutDM achieves the best speed-quality tradeoff

22

Quantitative Evaluation (in category + size → position)

Better

Worse

LayoutDM achieves the best speed-quality tradeoff

23

● A discrete diffusion model tamed for layout generation
● Training-free algorithm to inject various conditions during inference
● Favorable performance against task-specific/agnostic baselines

Summary

Check codes and more results at
https://cyberagentailab.github.io/layout-dm/

