

Arxiv: <u>https://arxiv.org/abs/2301.00808</u> Code: <u>https://github.com/facebookresearch/ConvNeXt-V2</u>

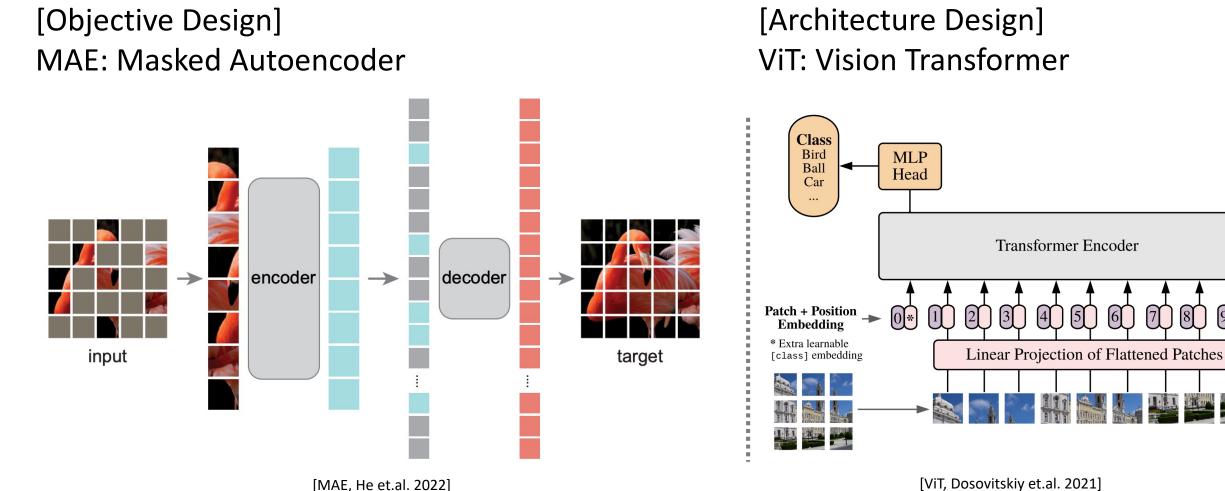
@ WED-PM-360

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

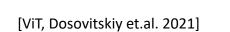
<u>Sanghyun Woo¹</u>, Shoubhik Debnath², Ronghang Hu², Xinlei Chen², Zhuang Liu², In So Kweon¹, Saining Xie³

¹KAIST, ²Meta AI, ³New York University

Independent design of objective or architecture



ViT: Vision Transformer



4

5

6

 $\overline{7}$

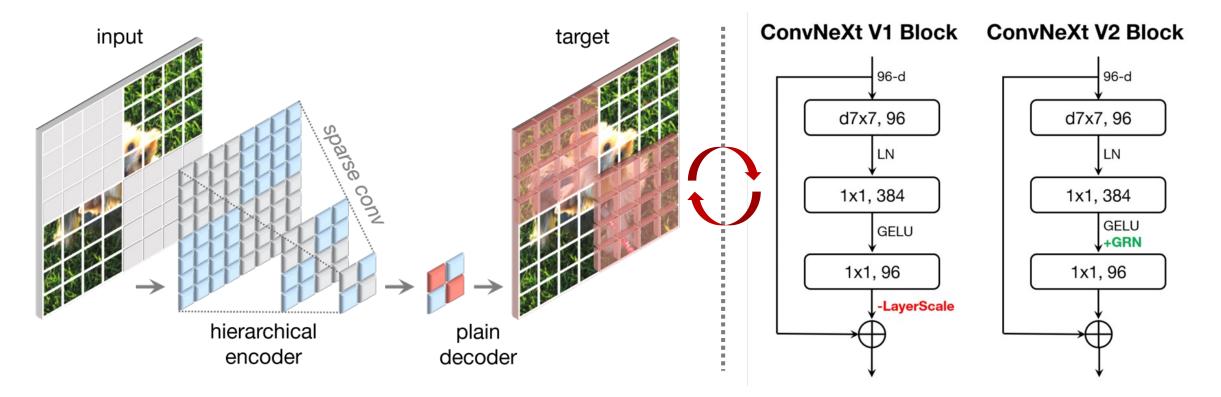
8

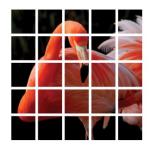
ConvNeXt V2, Co-Design Matters

[Objective Design] FCMAE: Fully Convolutional Masked Autoencoder

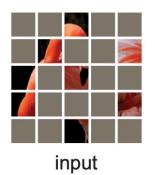
[Architecture Design]

GRN: Global Response Normalization

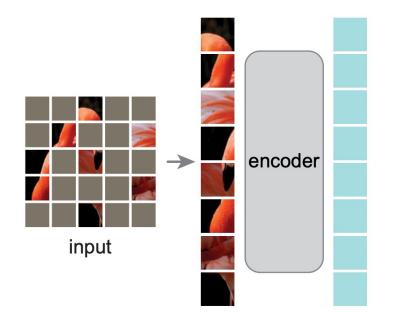




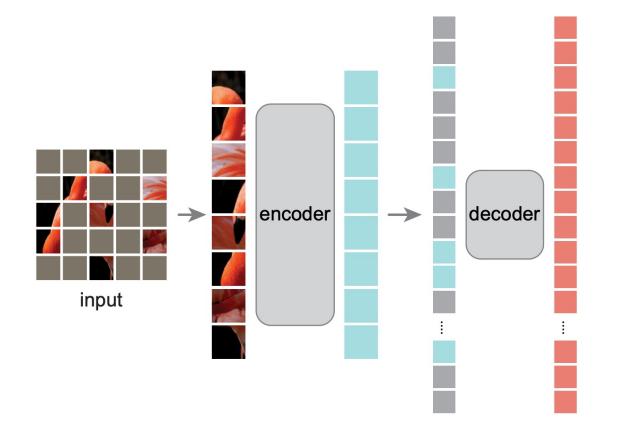
• Patch as a Word.



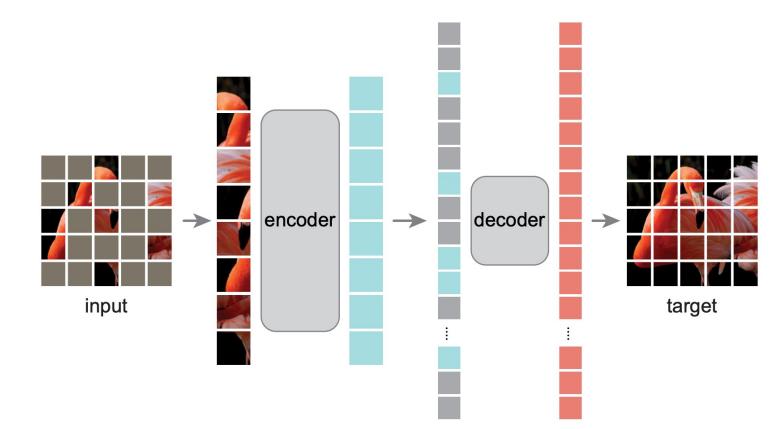
- Patch as a Word.
- Random patch dropout.



- Patch as a Word.
- Random patch dropout.
- Encoder only sees the visible patches,

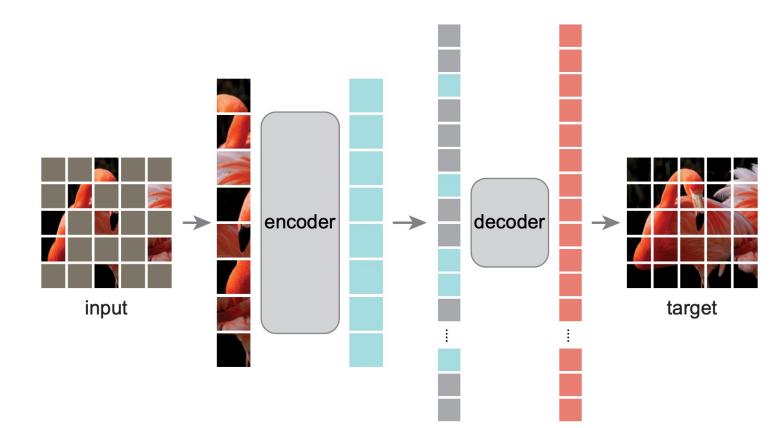


- Patch as a Word.
- Random patch dropout.
- Encoder only sees the visible patches, Decoder comprehends all.



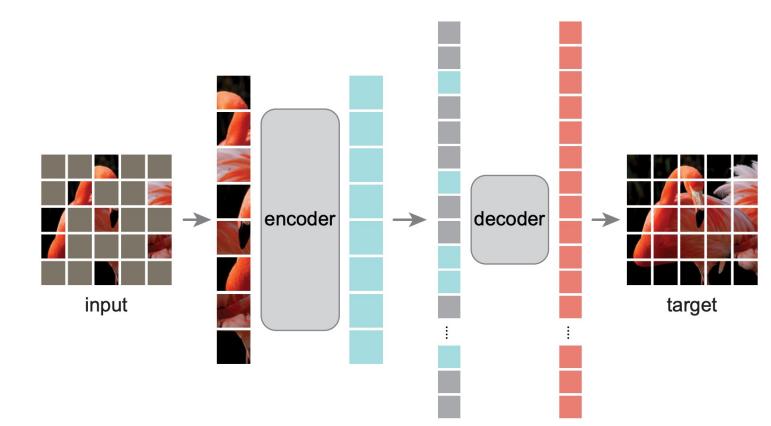
- Patch as a Word.
- Random patch dropout.
- Encoder only sees the visible patches, Decoder comprehends all.
- Reconstructs masked patches.

Masked Modeling for Vision Transformer



- Patch as a Word.
- Random patch dropout.
- Encoder only sees the visible patches, Decoder comprehends all.
- Reconstructs masked patches.

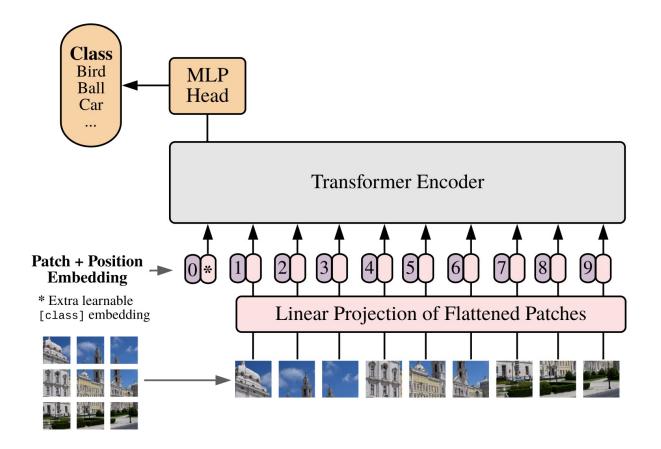
Masked Modeling for ConvNets?



- Patch as a Word.
- Random patch dropout.
- Encoder only sees the visible patches, Decoder comprehends all.
- Reconstructs masked patches.

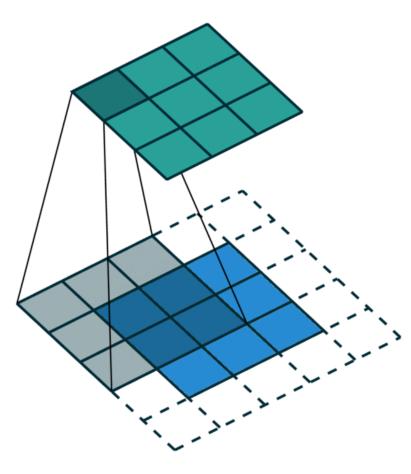
Transformers: Image as sequence of tokens

By design, Transformers can easily manage patch dropout.



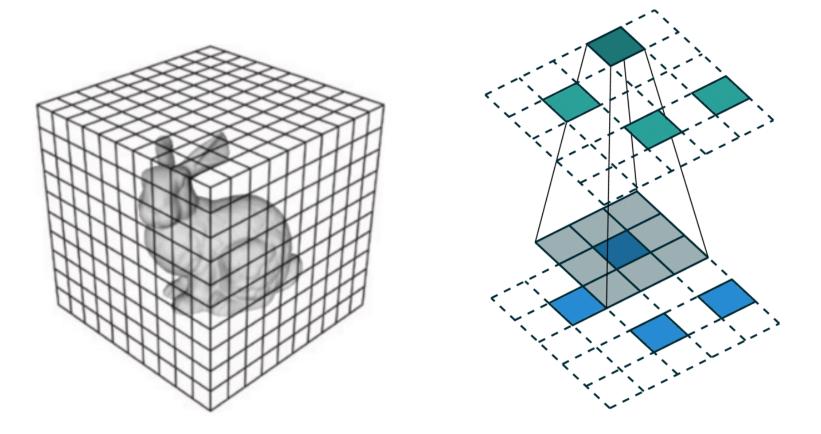
ConvNets: Image as 2D grids of pixels

However, this poses a challenge for ConvNets, which use dense sliding windows.



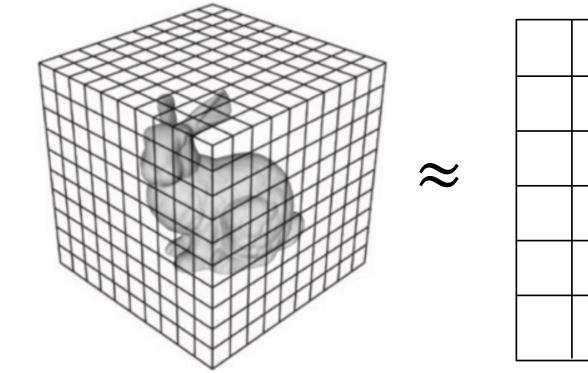
Sparse Convolution for 3D point cloud processing

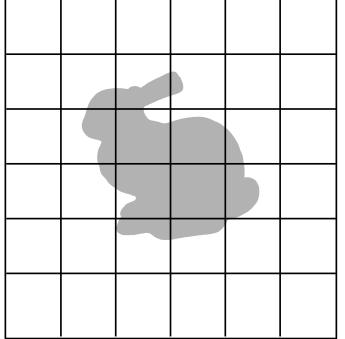
A special convolutional operation exists to efficiently handle sparse point clouds.



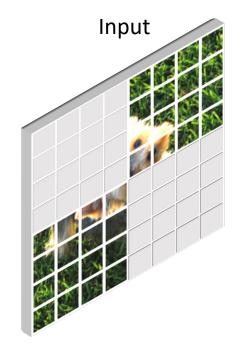
From Sparse 3D point clouds to Masked 2D images

We view a masked images as sparse patch sets, like 3D point clouds – a novel perspective enabling masked modeling for ConvNets

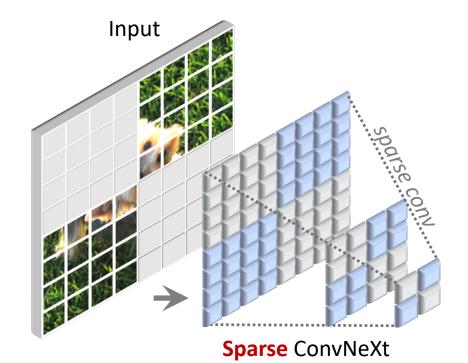




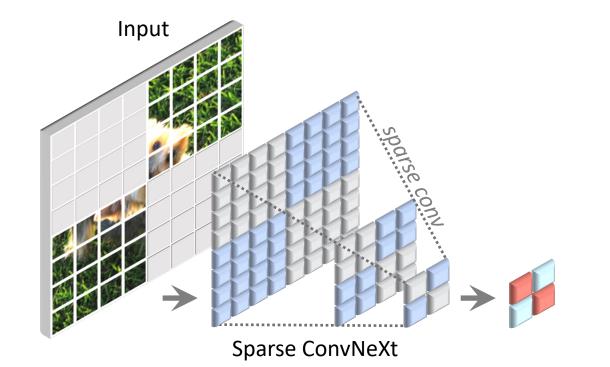
Random patch dropout



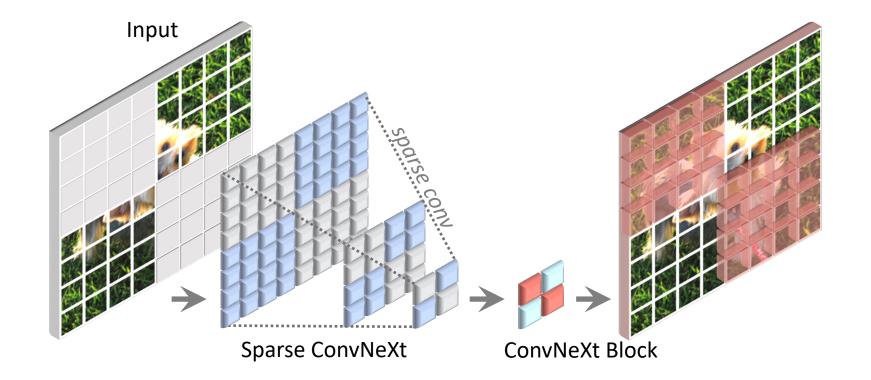
Encode visible patches using sparse convolutions



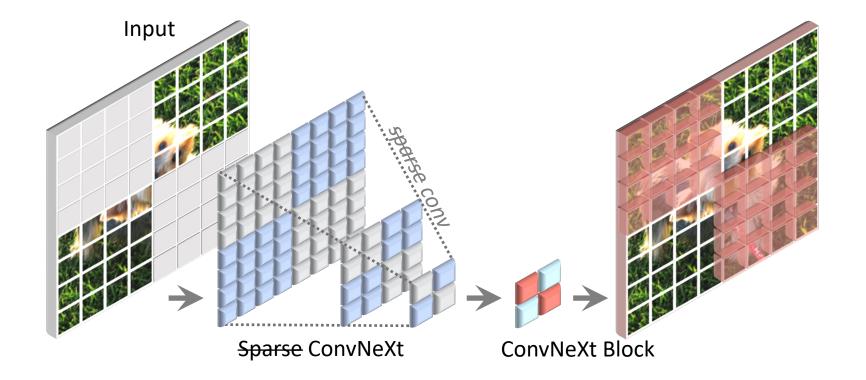
Add mask tokens



Reconstruct masked patches



After pre-training, the weights are converted back to standard layers without requiring special handling.



The impact of FCMAE

Train & Test Protocol

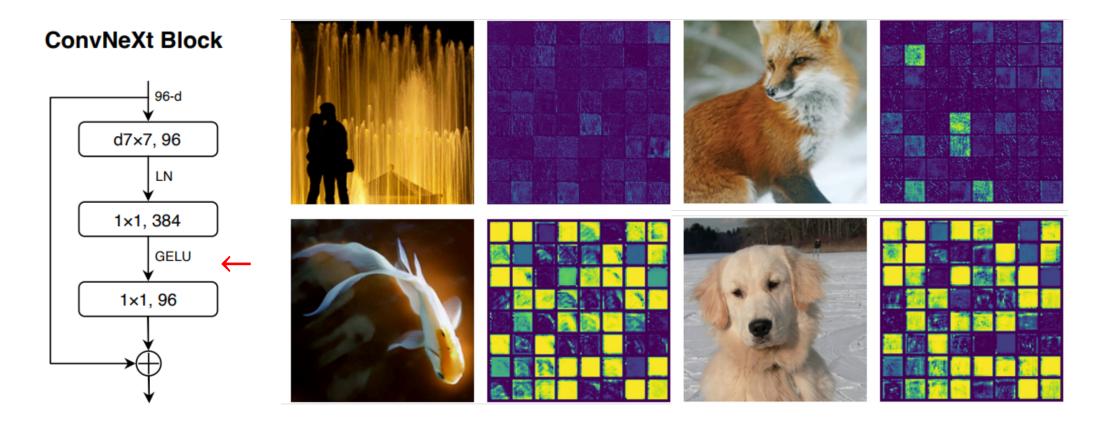
- 800ep Pre-training on ImageNet-1K train
- 100ep Fine-tuning on ImageNet-1K train
- Test on ImageNet-1K val

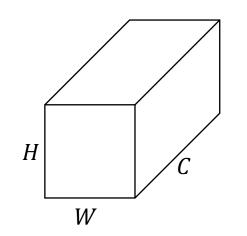
Sup, 100ep	Sup, 300ep. [33]	FCMAE	
82.7	83.8	83.7	

FCMAE pre-trained ConvNeXt surpasses random initialization but lags behind the original supervised setup.

Feature Collapse with Dead or Saturated Neurons

Feature collapse detected in the dimension-expansion MLP layers in FCMAE pre-trained ConvNeXtV1 blocks (more analyses on appendix!).

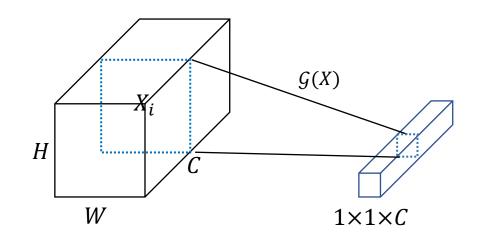




1) Global feature aggregation

case	ft
g.avg.	83.7
L1	84.3
L2	84.6

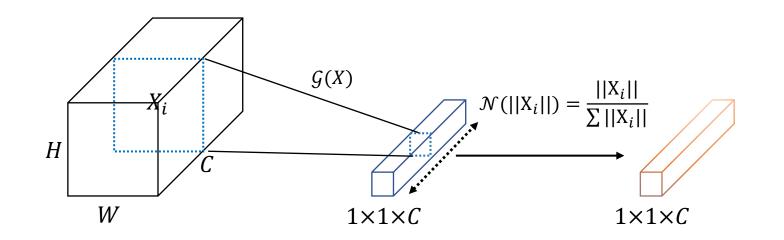
(a) Global aggregation $G(\cdot)$. L2 Norm-based aggregation function produces the best result.



- 1) Global feature aggregation
- 2) Feature normalization

case	ft
$(X_i - \mu)/\sigma$	84.5
$1/\sum X_i $	83.8
$ X_i /\sum X_i $	84.6

(b) Normalization operator, $N(\cdot)$. Divisive normalization is an effective channel importance calibrator.



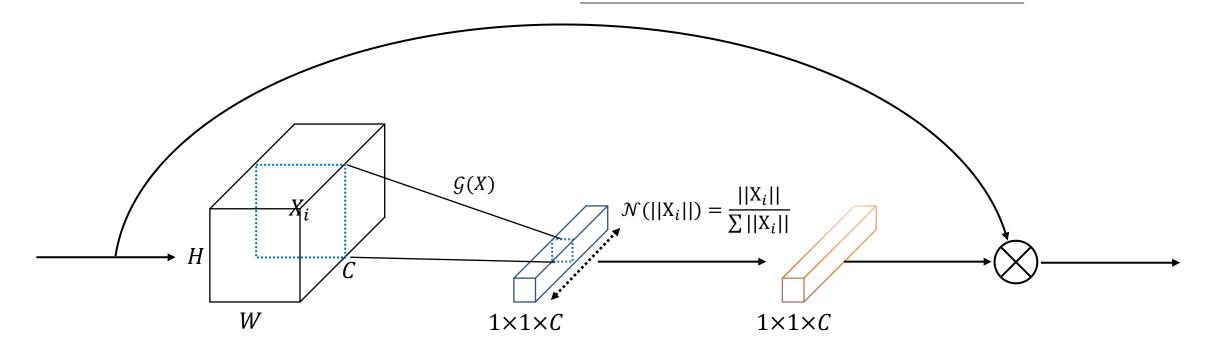
Two lines of code are all you need!

- 1) Global feature aggregation
- 2) Feature normalization
- 3) Feature calibration

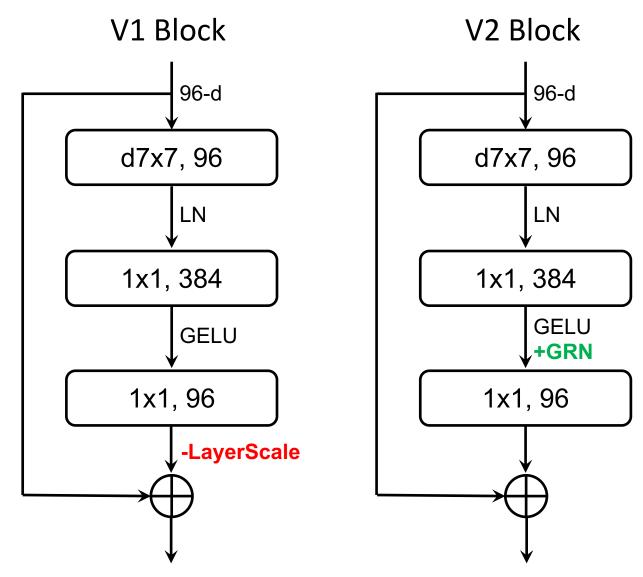
Algorithm 1 Pseudocode of GRN in a PyTorch-like style.

gamma, beta: learnable affine transform parameters
X: input of shape (N,H,W,C)

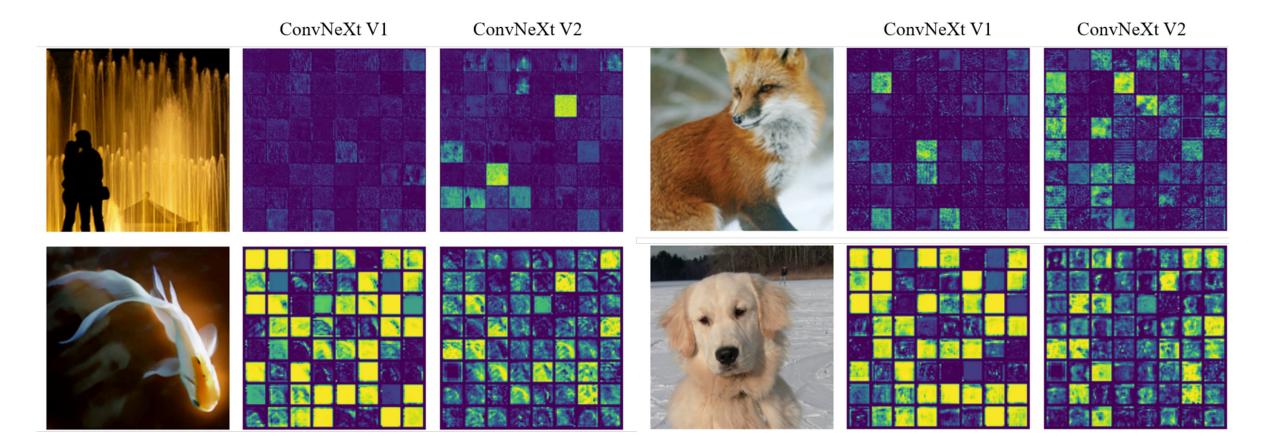
gx = torch.norm(X, p=2, dim=(1,2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True)+1e-6)
return gamma * (X * nx) + beta + X



ConvNeXt V2



Impact of GRN

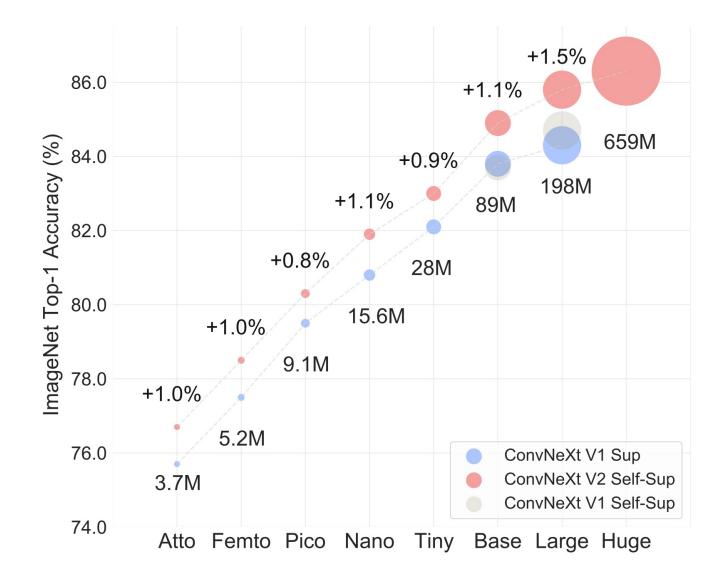


Co-design Matters

Backbone	Method	#param	FLOPs	Val acc.
ConvNeXt V1-B	Supervised	89M	15.4G	83.8
ConvNeXt V1-B	FCMAE	89M	15.4G	83.7
ConvNeXt V2-B	Supervised	89M	15.4G	84.3 (+0.5)
ConvNeXt V2-B	FCMAE	89M	15.4G	84.6 (+0.8)
ConvNeXt V1-L	Supervised	198M	34.4G	84.3
ConvNeXt V1-L	FCMAE	198M	34.4G	84.4
ConvNeXt V2-L	Supervised	198M	34.4G	84.5 (+0.2)
ConvNeXt V2-L	FCMAE	198M	34.4G	85.6 (+1.3)

When the architecture and the objective are *co-designed* and used together, masked modeling becomes effective for ConvNeXt.

Model Scaling



State-of-the-art Classification Accuracy

Туре	Backbone	size	#param	FLOPS	Val acc.
Conv	Efficient V2-XL	480^{2}	208M	94.0G	87.3
COIIV	ConvNeXt V1-XL	384 ²	350M	179.0G	87.8
	CoAtNet-4	512 ²	275M	360.9G	88.1
Hybrid	MaxViT-XL	384 ²	475M	293.7G	88.5
	MaxViT-XL	512 ²	475M	535.2G	88.7
Trans	MViTV2-H	384 ²	667M	388.5G	88.6
114115	MViTV2-H	512 ²	667M	763.5G	88.8
Conv	ConvNeXt V2-H	384 ²	659M	337.9G	88.7
	ConvNeXt V2-H	512^{2}	659M	600.7G	88.9

ImageNet-1K fine-tuning results using ImageNet-21K labels

Transfer Learning

Backbone	Method	FLOPS	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	AP^{mask}	AP_{50}^{mask}	AP_{75}^{mask}
ConvNeXt V1-B	Supervised	486G	50.3	71.6	56.1	44.9	68.5	48.8
ConvNeXt V2-B	Supervised	486G	51.0	72.4	56.6	45.6	69.5	49.7
Swin-B	SimMIM	497G	52.3	—	—	—	—	—
ConvNeXt V2-B	FCMAE	486G	52.9	72.6	58.9	46.6	70.0	51.1
ConvNeXt V1-L	Supervised	875G	50.6	71.5	56.3	45.1	68.7	49.2
ConvNeXt V2-L	Supervised	875G	51.5	72.5	57.3	45.8	69.4	49.9
Swin-L	SimMIM	904G	53.8	—	—	—	—	—
ConvNeXt V2-L	FCMAE	875G	54.4	73.9	60.4	47.7	71.4	52.3
Swin V2-H	SimMIM	—	54.4	—	—	—	—	_
ConvNeXt V2-H	FCMAE	2525G	55.7	75.2	61.8	48.9	72.8	53.6

Backbone	Method	input	mIoU	#param	FLOPS
ConvNeXt V1-B	Supervised	512 ²	49.9	122M	1170G
ConvNeXt V2-B	Supervised	512^{2}	50.5	122M	1170G
Swin-B	SimMIM	512^{2}	52.8	121M	1181G
ConvNeXt V2-B	FCMAE	512^{2}	52.1	122M	1170G
ConvNeXt V1-L	Supervised	512 ²	50.5	235M	1573G
ConvNeXt V2-L	Supervised	512^{2}	51.6	235M	1573G
Swin-L	SimMIM	512^{2}	53.5	234M	1601G
ConvNeXt V2-L	FCMAE	512^{2}	53.7	235M	1573G
Swin V2-H	SimMIM	512 ²	54.2	_	_
ConvNeXt V2-H	FCMAE	512^{2}	55.0	707M	3272G
ConvNeXt V2-H	FCMAE, 22K ft	640 ²	57.0	707M	5113G

COCO detection

ADE20k segmentation

Conclusion

- ConvNeXt V2: Co-design of objective (FCMAE) and architecture (GRN)
- Broader complexity models and better performance
- Strong scalability

Poster Session: @WED-PM-360

https://github.com/facebookresearch/ConvNeXt-V2