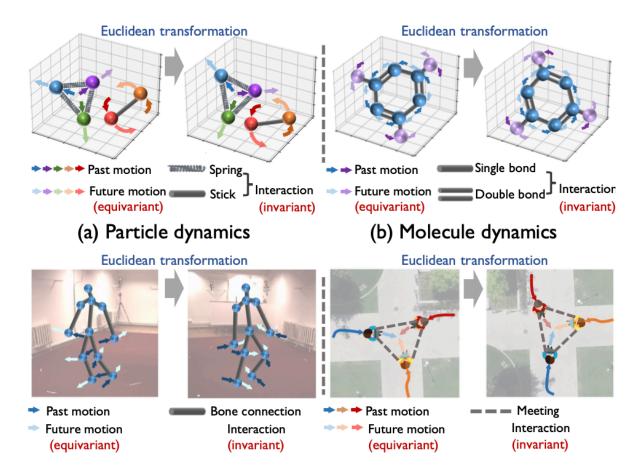
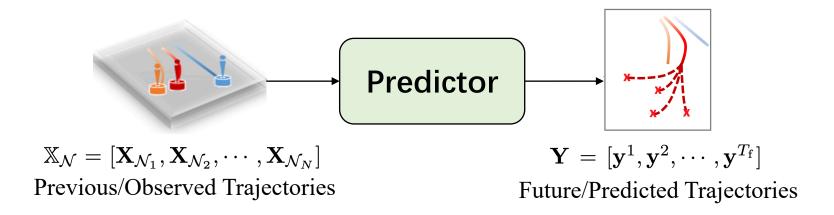
EqMotion: Equivariant Multi-agent Motion Prediction with Invariant Interaction Reasoning

Chenxin Xu^{1,2}, Robby T. Tan², Yuhong Tan¹, Siheng Chen^{1,3}, Yu Guang Wang¹, Xinchao Wang², Yanfeng Wang^{3,1}

¹Shanghai Jiao Tong University, ²National University of Singapore, ³Shanghai AI Laboratory

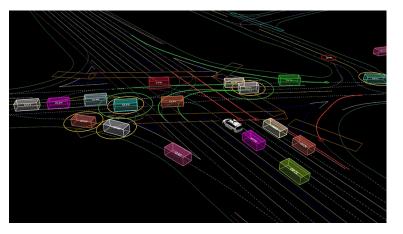


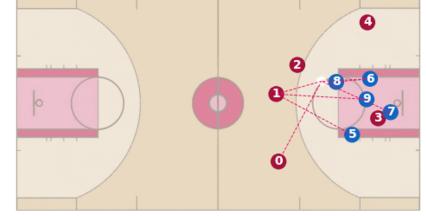
Summary


- We propose EqMotion, the first motion prediction model that theoretically ensures sequence-to-sequence motion equivariance.
- We propose a novel invariant interaction reasoning module, in which the captured interactions between agents are invariant to the input motion.
- We conduct experiments on four types of scenarios and find that EqMotion is applicabl to all these different tasks, and importantly outperforms existing state-of-the-art methods on all the tasks.

Introduction

• Multi-Agent Trajectory Prediction

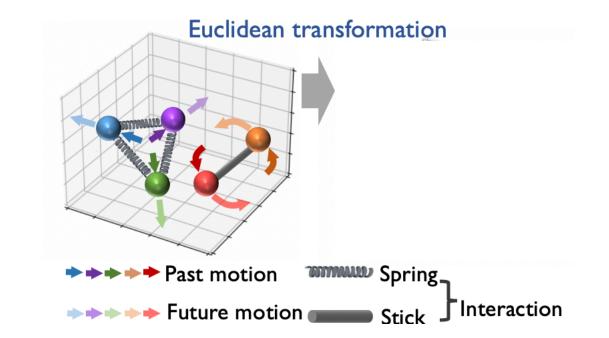

Given the past trajectories, predict the future trajectories for multiple interactive agents


Introduction

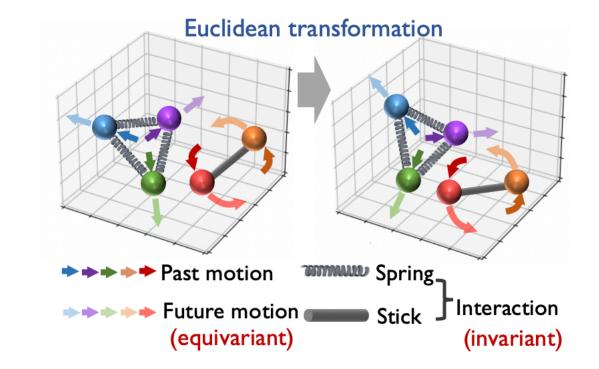
• Multi-Agent Trajectory Prediction

Given the past trajectories, predict the future trajectories for multiple interactive agents

Autonomous driving


Tracking and Surveillance

Sports


- An often-overlooked yet fundamental principle
 - Predicted trajectory Equivariant to Euclidean transformations
 - Inferred Relationship Invariant to Euclidean transformations

Particle dynamics

- An often-overlooked yet fundamental principle
 - Predicted trajectory Equivariant to Euclidean transformations
 - Inferred Relationship Invariant to Euclidean transformations

- An often-overlooked yet fundamental principle
 - Predicted trajectory Equivariant to Euclidean transformations
 - Inferred Relationship Invariant to Euclidean transformations

Particle dynamics

• How to employing this principle into a network ?

Previous methods — Normalization or data augmentation

- Unable to guarantee the equivariance property
- Bringing more learning burden

• How to employing this principle into a network ?

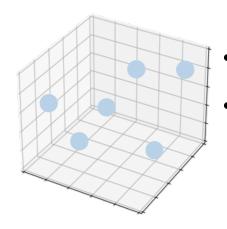
Previous methods — Normalization or data augmentation

- Unable to guarantee the equivariance property
- Bringing more learning burden

Our EqMotion — Embed this principle directly into the network structure!

• How to employing this principle into a network ?

Previous methods — Normalization or data augmentation

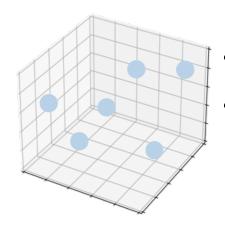

- Unable to guarantee the equivariance property
- Bringing more learning burden

Our EqMotion — Embed this principle directly into the network structure!

- Theoretically robust to arbitrary Euclidean transformations
- Reducing the network's learning burden

- Feature Description
 - Traditional vector feature
 - -> cannot be operated by Euclidean transformation
 - -> network cannot maintain equivariance

• Feature Description



Geometric features $\{\mathbf{G}_i^{(0)}\}$

C×n matrix

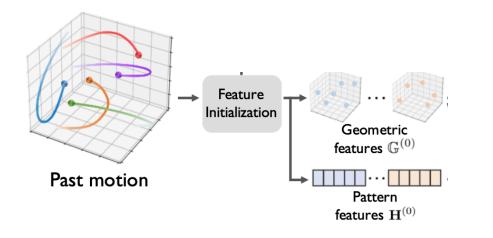
- Preserves equivariant property
- Preserve motion attributes that are sensitive to Euclidean
 - geometric transforms

• Feature Description

- Preserves equivariant property
- Preserve motion attributes that are sensitive to Euclidean geometric transforms

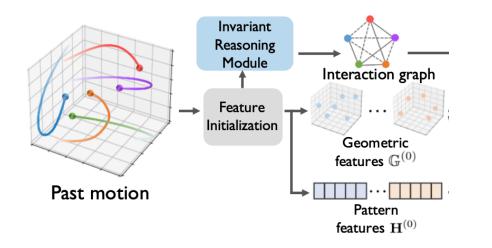
Geometric features $\{\mathbf{G}_i^{(0)}\}$

 $C \times n$ matrix

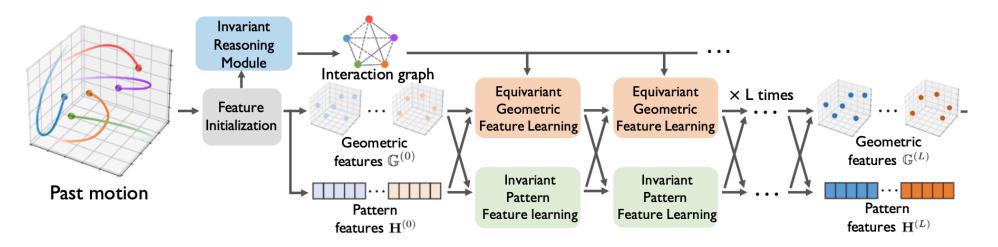

Pattern features $\{\mathbf{h}_i^{(0)}\}$

D - Vector

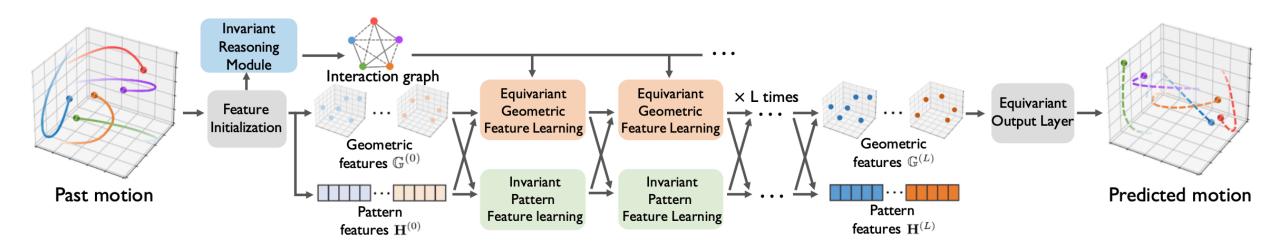
- Preserves invariant property
- Preserve motion attributes that are independent to Euclidean


geometric transforms

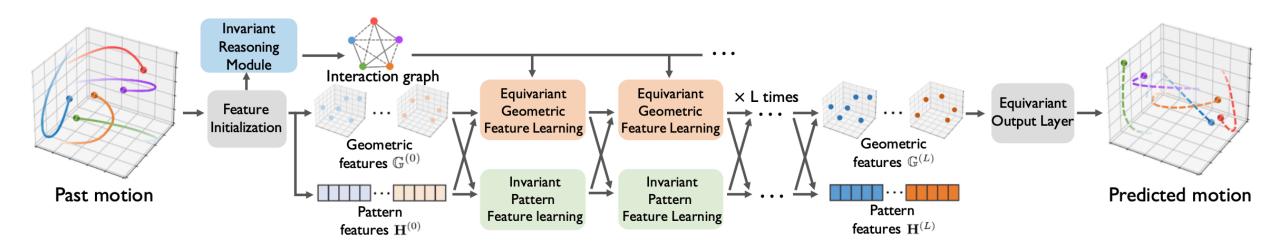
• Overview


I. Feature initialization

• Overview


- I. Feature initialization
- 2. Invariant reasoning

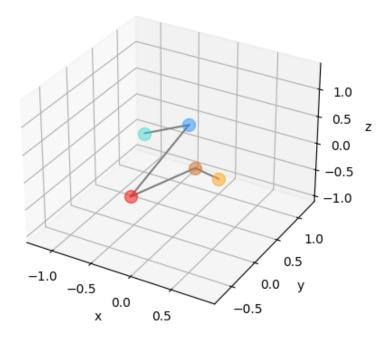
• Overview


- I. Feature initialization
- 2. Invariant reasoning
- 3. Equivariant geometric feature learning
- 4. Invariant pattern feature learning

• Overview

- I. Feature initialization
- 2. Invariant reasoning
- 3. Equivariant geometric feature learning
- 4. Invariant pattern feature learning
- 5. Equivariant output layer

• Overview



All network operation satisfy:

- Geometric feature Equivariant!
- Pattern feature Invariant!

• Scenario I: Particle Dynamic Prediction

Particle Dynamics Prediction

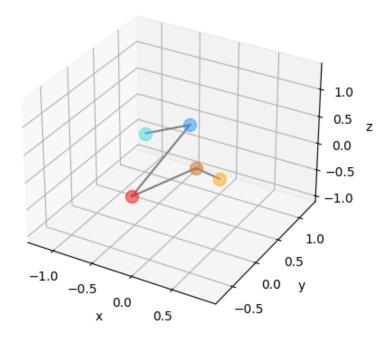

On reasoning:

Table 1. Interaction recognition accuracy and consistency (mean \pm std in % in 5 independent runs) on the physical simulation.

Model	Sp	rings	Charged					
wiouei	Accuracy	Consistency	Accuracy	Consistency				
Corr.(path) [28]	58.1 ± 0.0	99.8 ± 0.1	57.5 ± 0.1	87.9 ± 0.1				
Corr.(LSTM) [28]	53.5 ± 0.5	92.4 ± 2.1	57.2 ± 0.4	91.7 ± 1.1				
EGNN [58]	61.0 ± 1.3	$\textbf{100.0} \pm 0.0$	58.2 ± 1.4	$\textbf{100.0} \pm 0.0$				
NRI [28]	93.0 ± 1.1	93.7 ± 1.2	70.0 ± 0.6	88.5 ± 1.3				
dNRI [17]	93.3 ± 2.0	89.6 ± 2.0	70.4 ± 1.7	83.6 ± 1.8				
Ours	97.6 ± 1.1	$\textbf{100.0} \pm 0.0$	80.9 ± 3.4	$\textbf{100.0} \pm 0.0$				
Supervised	98.7 ± 0.2	100.0 ± 0.0	97.4 ± 0.2	100.0 ± 0.0				

• Scenario I: Particle Dynamic Prediction

Particle Dynamics Prediction

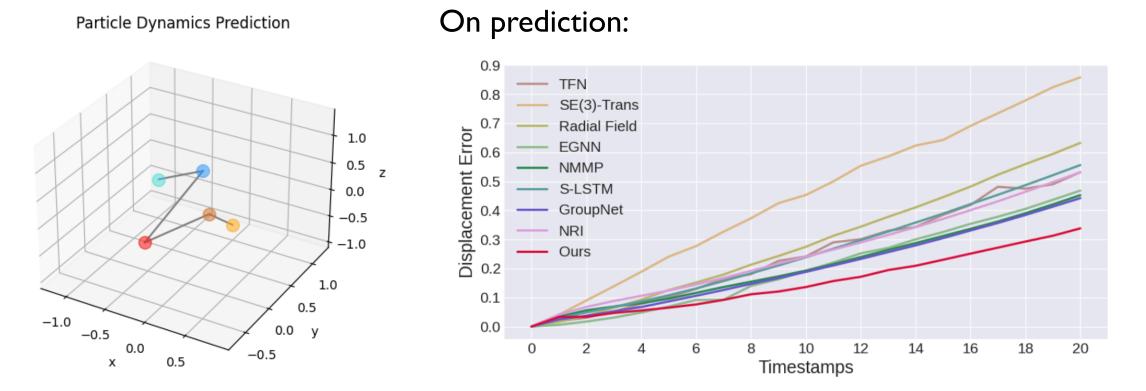
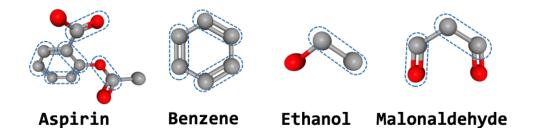

On reasoning:

Table 1. Interaction recognition accuracy and consistency (mean \pm std in % in 5 independent runs) on the physical simulation.

Model	Sp	rings	Charged					
wiouei	Accuracy	Consistency	Accuracy	Consistency				
Corr.(path) [28]	58.1 ± 0.0	99.8 ± 0.1	57.5 ± 0.1	87.9 ± 0.1				
Corr.(LSTM) [28]	53.5 ± 0.5	92.4 ± 2.1	57.2 ± 0.4	91.7 ± 1.1				
EGNN [58]	61.0 ± 1.3	$\textbf{100.0} \pm 0.0$	58.2 ± 1.4	$\textbf{100.0} \pm 0.0$				
NRI [28]	93.0 ± 1.1	93.7 ± 1.2	70.0 ± 0.6	88.5 ± 1.3				
dNRI [17]	93.3 ± 2.0	89.6 ± 2.0	70.4 ± 1.7	83.6 ± 1.8				
Ours	97.6 ± 1.1	$\textbf{100.0} \pm 0.0$	80.9 ± 3.4	$\textbf{100.0} \pm 0.0$				
Supervised	98.7 ± 0.2	100.0 ± 0.0	97.4 ± 0.2	100.0 ± 0.0				

Accurate and consistent reasoning!


• Scenario I: Particle Dynamic Prediction

Accurate prediction!

• Scenario II: Molecule Dynamic Prediction

Table 4. Prediction ADE/FDE ($\times 10^{-2}$) on the MD17 dataset.

	Aspirin	Benzene	Ethanol	Malonaldehyde
Radial Field [31]	17.98/26.20	7.73/12.47	8.10/10.61	16.53/25.10
TFN [<mark>61</mark>]	15.02/21.35	7.55/12.30	8.05/10.57	15.21/24.32
SE(3)-Trans [14]	15.70/22.39	7.62/12.50	8.05/10.86	15.44/24.47
EGNN [58]	14.61/20.65	7.50/12.16	8.01/10.22	15.21/24.00
LSTM	17.59/24.79	6.06/9.46	7.73/9.88	15.14/22.90
S-LSTM [1]	13.12/18.14	3.06/3.52	7.23/9.85	11.93/18.43
NRI [28]	12.60/18.50	1.89/2.58	6.69/8.78	12.79/19.86
NMMP [22]	10.41/14.67	2.21/3.33	6.17/7.86	9.50/14.89
GroupNet [69]	10.62/14.00	2.02/2.95	6.00/7.88	7.99/12.49
EqMotion(Ours)	5.95/8.38	1.18/1.73	5.05/7.02	5.85/9.02

• Scenario II: Molecule Dynamic Prediction

Table 4. Prediction ADE/FDE ($\times 10^{-2}$) on the MD17 dataset.

					Aspirin	Benzene	Ethanol	Malonaldehyde
				Radial Field [31]	17.98/26.20	7.73/12.47	8.10/10.61	16.53/25.10
			0	TFN [<mark>61</mark>]	15.02/21.35	7.55/12.30	8.05/10.57	15.21/24.32
				SE(3)-Trans [14]	15.70/22.39	7.62/12.50	8.05/10.86	15.44/24.47
				EGNN [58]	14.61/20.65	7.50/12.16	8.01/10.22	15.21/24.00
	90			LSTM	17.59/24.79	6.06/9.46	7.73/9.88	15.14/22.90
Aspirin	Benzene	Ethanol	Malonaldehyde	S-LSTM [1]	13.12/18.14	3.06/3.52	7.23/9.85	11.93/18.43
Азртіті	Delizene	Lenanoi	Hatonatuenyue	NRI [28]	12.60/18.50	1.89/2.58	6.69/8.78	12.79/19.86
				NMMP [22]	10.41/14.67	2.21/3.33	6.17/7.86	9.50/14.89
				GroupNet [69]	10.62/14.00	2.02/2.95	6.00/7.88	7.99/12.49
				EqMotion(Ours)	5.95/8.38	1.18/1.73	5.05/7.02	5.85/9.02

Accurate prediction on all kinds of molecules!

• Scenario III: Human Skeleton Motion Prediction

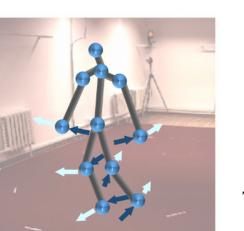


Table 2. Comparisons of short-term skeleton motion prediction on 11 representative actions and average results across all actions on H3.6M.

Motion		Wa	lking			Ea	ting			Sm	oking			Disc	ussion			Direc	tions			Phe	oning	
millisecond	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Res-sup. (CVPR'17)	29.4	50.8	76.0	81.5	16.8	30.6	56.9	68.7	23.0	42.6	70.1	82.7	32.9	61.2	90.9	96.2	35.4	57.3	76.3	87.7	38.0	69.3	115.0	126.7
Traj-GCN (ICCV'19)	12.3	23.0	39.8	46.1	8.4	16.9	33.2	40.7	7.9	16.2	31.9	38.9	12.5	27.4	58.5	71.7	9.0	19.9	43.4	53.7	10.2	21.0	42.5	52.3
DMGNN (CVPR'20)	17.3	30.7	54.6	65.2	11.0	21.4	36.2	43.9	9.0	17.6	32.1	40.3	17.3	34.8	61.0	69.8	13.1	24.6	64.7	81.9	12.5	25.8	48.1	58.3
MSRGCN (ICCV'21)	12.2	22.7	38.6	45.2	8.4	17.1	33.0	40.4	8.0	16.3	31.3	38.2	12.0	26.8	57.1	69.7	8.6	19.7	43.3	53.8	10.1	20.7	41.5	51.3
PGBIG (CVPR'22)	10.2	19.8	34.5	40.3	7.0	15.1	30.6	38.1	6.6	14.1	28.2	34.7	10.0	23.8	53.6	66.7	7.2	17.6	40.9	51.5	8.3	18.3	38.7	48.4
SPGSN (ECCV'22)	10.1	19.4	34.8	41.5	7.1	14.9	30.5	37.9	6.7	13.8	28.0	34.6	10.4	23.8	53.6	67.1	7.4	17.2	39.8	50.3	8.7	18.3	38.7	48.5
EqMotion (Ours)	9.0	17.5	32.6	39.2	6.3	13.6	28.9	36.5	5.5	11.3	23.0	29.3	8.2	18.9	42.1	53.9	6.3	15.8	38.9	50.1	7.4	16.7	36.9	47.0
Motion		Po	sing			Si	tting			Sittin	g Down	l I		Wa	iting		W	alking	Togetl	ner		Av	erage	
millisecond	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Res-sup. (CVPR'17)	36.1	69.1	130.5	157.1	42.6	81.4	134.7	151.8	47.3	86.0	145.8	168.9	30.6	57.8	106.2	121.5	26.8	50.1	80.2	92.2	34.7	62.0	101.1	115.5
Traj-GCN (ICCV'19)	13.7	29.9	66.6	84.1	10.6	21.9	46.3	57.9	16.1	31.1	61.5	75.5	11.4	24.0	50.1	61.5	10.5	21.0	38.5	45.2	12.7	26.1	52.3	63.5
DMGNN (CVPR'20)	15.3	29.3	71.5	96.7	11.9	25.1	44.6	50.2	15.0	32.9	77.1	93.0	12.2	24.2	59.6	77.5	14.3	26.7	50.1	63.2	17.0	33.6	65.9	79.7
MSRGCN (ICCV'21)	12.8	29.4	67.0	85.0	10.5	22.0	46.3	57.8	16.1	31.6	62.5	76.8	10.7	23.1	48.3	59.2	10.6	20.9	37.4	43.9	12.1	25.6	51.6	62.9
PGBIG (CVPR'22)	10.7	25.7	60.0	76.6	8.8	19.2	42.4	53.8	13.9	27.9	57.4	71.5	8.9	20.1	43.6	54.3	8.7	18.6	34.4	41.0	10.3	22.7	47.4	58.5
SPGSN (ECCV'22)	10.7	25.3	59.9	76.5	9.3	19.4	42.3	53.6	14.2	27.7	56.8	70.7	9.2	19.8	43.1	54.1	8.9	18.2	33.8	40.9	10.4	22.3	47.1	58.3
EqMotion (Ours)	8.2	18.9	43.4	57.5	8.1	18.0	41.2	52.9	13.0	26.5	56.2	70.7	7.6	17.4	39.9	51.1	7.8	16.1	30.6	37.1	9.1	20.1	43.7	55.0

Table 3. Comparisons of long-term skeleton motion prediction on 8 representative actions and average results across all actions on H3.6M.

Motion	Wal	king	Ea	ting	Smo	oking	Disc	ussion	Gre	eting	Pho	oning	Pos	sing	Walking	Together	Ave	erage
millisecond	560ms	1000ms	560ms	1000ms	560ms	1000ms												
Res-Sup. [50]	81.7	100.7	79.9	100.2	94.8	137.4	121.3	161.7	156.3	184.3	143.9	186.8	165.4	236.8	173.6	202.3	129.2	165.0
Traj-GCN [47]	54.1	59.8	53.4	77.8	50.7	72.6	91.6	121.5	115.4	148.8	69.2	103.1	114.5	173.0	55.0	65.6	81.6	114.3
DMGNN [41]	71.4	85.8	58.1	86.7	50.9	72.2	81.9	138.3	144.5	170.5	71.3	108.4	125.5	188.2	70.5	86.9	93.6	127.6
MSRGCN [9]	52.7	63.0	52.5	77.1	49.5	71.6	88.6	117.6	116.3	147.2	68.3	104.4	116.3	174.3	52.9	65.9	81.1	114.2
PGBIG [44]	48.1	56.4	51.1	76.0	46.5	69.5	87.1	118.2	110.2	143.5	65.9	102.7	106.1	164.8	51.9	64.3	76.9	110.3
SPGSN [40]	46.9	53.6	49.8	73.4	46.7	68.6	89.7	118.6	111.0	143.2	66.7	102.5	110.3	165.4	49.8	60.9	77.4	109.6
EqMotion (Ours)	43.4	52.8	48.4	73.0	41.0	63.4	75.3	105.6	108.7	142.0	64.7	101.0	84.9	139.4	44.5	56.0	73.4	106.9
				-														

Scenario III: Human Skeleton Motion Prediction

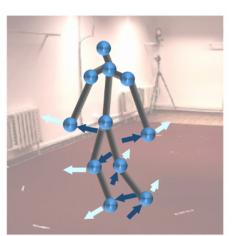
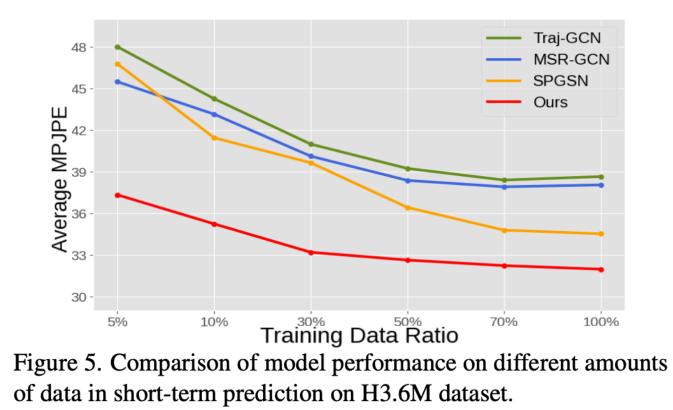


Table 2. Comparisons of short-term skeleton motion prediction on 11 representative actions and average results across all actions on H3.6M.

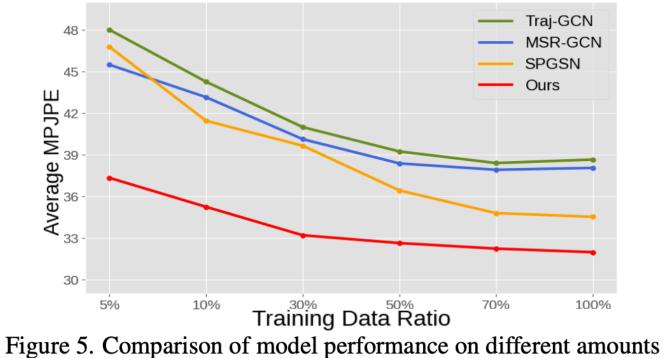
Motion		Wa	lking			Ea	ating			Sm	oking			Disc	cussion			Direc	tions			Phe	oning	
millisecond	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Res-sup. (CVPR'17)	29.4	50.8	76.0	81.5	16.8	30.6	56.9	68.7	23.0	42.6	70.1	82.7	32.9	61.2	90.9	96.2	35.4	57.3	76.3	87.7	38.0	69.3	115.0	126.7
Traj-GCN (ICCV'19)	12.3	23.0	39.8	46.1	8.4	16.9	33.2	40.7	7.9	16.2	31.9	38.9	12.5	27.4	58.5	71.7	9.0	19.9	43.4	53.7	10.2	21.0	42.5	52.3
DMGNN (CVPR'20)	17.3	30.7	54.6	65.2	11.0	21.4	36.2	43.9	9.0	17.6	32.1	40.3	17.3	34.8	61.0	69.8	13.1	24.6	64.7	81.9	12.5	25.8	48.1	58.3
MSRGCN (ICCV'21)	12.2	22.7	38.6	45.2	8.4	17.1	33.0	40.4	8.0	16.3	31.3	38.2	12.0	26.8	57.1	69.7	8.6	19.7	43.3	53.8	10.1	20.7	41.5	51.3
PGBIG (CVPR'22)	10.2	19.8	34.5	40.3	7.0	15.1	30.6	38.1	6.6	14.1	28.2	34.7	10.0	23.8	53.6	66.7	7.2	17.6	40.9	51.5	8.3	18.3	38.7	48.4
SPGSN (ECCV'22)	10.1	19.4	34.8	41.5	7.1	14.9	30.5	37.9	6.7	13.8	28.0	34.6	10.4	23.8	53.6	67.1	7.4	17.2	39.8	50.3	8.7	18.3	38.7	48.5
EqMotion (Ours)	9.0	17.5	32.6	39.2	6.3	13.6	28.9	36.5	5.5	11.3	23.0	29.3	8.2	18.9	42.1	53.9	6.3	15.8	38.9	50.1	7.4	16.7	36.9	47.0
Motion		Po	sing			Si	tting			Sittin	g Down	l		Wa	aiting		Wa	alking	Togetł	ner		Av	erage	
millisecond	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Res-sup. (CVPR'17)	36.1	69.1	130.5	157.1	42.6	81.4	134.7	151.8	47.3	86.0	145.8	168.9	30.6	57.8	106.2	121.5	26.8	50.1	80.2	92.2	34.7	62.0	101.1	115.5
Traj-GCN (ICCV'19)	13.7	29.9	66.6	84.1	10.6	21.9	46.3	57.9	16.1	31.1	61.5	75.5	11.4	24.0	50.1	61.5	10.5	21.0	38.5	45.2	12.7	26.1	52.3	63.5
DMGNN (CVPR'20)	15.3	29.3	71.5	96.7	11.9	25.1	44.6	50.2	15.0	32.9	77.1	93.0	12.2	24.2	59.6	77.5	14.3	26.7	50.1	63.2	17.0	33.6	65.9	79.7
MSRGCN (ICCV'21)	12.8	29.4	67.0	85.0	10.5	22.0	46.3	57.8	16.1	31.6	62.5	76.8	10.7	23.1	48.3	59.2	10.6	20.9	37.4	43.9	12.1	25.6	51.6	62.9
PGBIG (CVPR'22)	10.7	25.7	60.0	76.6	8.8	19.2	42.4	53.8	13.9	27.9	57.4	71.5	8.9	20.1	43.6	54.3	8.7	18.6	34.4	41.0	10.3	22.7	47.4	58.5
SPGSN (ECCV'22)	10.7	25.3	59.9	76.5	9.3	19.4	42.3	53.6	14.2	27.7	56.8	70.7	9.2	19.8	43.1	54.1	8.9	18.2	33.8	40.9	10.4	22.3	47.1	58.3
EqMotion (Ours)	8.2	18.9	43.4	57.5	8.1	18.0	41.2	52.9	13.0	26.5	56.2	70.7	7.6	17.4	39.9	51.1	7.8	16.1	30.6	37.1	9.1	20.1	43.7	55.0

Table 3. Comparisons of long-term skeleton motion prediction on 8 representative actions and average results across all actions on H3.6M.

Motion	Wal	king	Eating		Smoking		Disc	ussion	Greeting		Phoning		Posing		Walking Togethe		Ave	erage
millisecond	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms
Res-Sup. [50]	81.7	100.7	79.9	100.2	94.8	137.4	121.3	161.7	156.3	184.3	143.9	186.8	165.4	236.8	173.6	202.3	129.2	165.0
Traj-GCN [47]	54.1	59.8	53.4	77.8	50.7	72.6	91.6	121.5	115.4	148.8	69.2	103.1	114.5	173.0	55.0	65.6	81.6	114.3
DMGNN [41]	71.4	85.8	58.1	86.7	50.9	72.2	81.9	138.3	144.5	170.5	71.3	108.4	125.5	188.2	70.5	86.9	93.6	127.6
MSRGCN [9]	52.7	63.0	52.5	77.1	49.5	71.6	88.6	117.6	116.3	147.2	68.3	104.4	116.3	174.3	52.9	65.9	81.1	114.2
PGBIG [44]	48.1	56.4	51.1	76.0	46.5	69.5	87.1	118.2	110.2	143.5	65.9	102.7	106.1	164.8	51.9	64.3	76.9	110.3
SPGSN [40]	46.9	53.6	49.8	73.4	46.7	68.6	89.7	118.6	111.0	143.2	66.7	102.5	110.3	165.4	49.8	60.9	77.4	109.6
EqMotion (Ours)	43.4	52.8	48.4	73.0	41.0	63.4	75.3	105.6	108.7	142.0	64.7	101.0	84.9	139.4	44.5	56.0	73.4	106.9

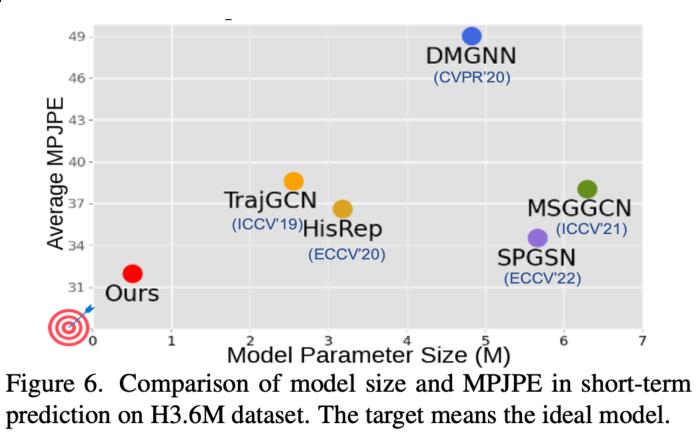

Far more accurate prediction without any specific design for human skeleton!

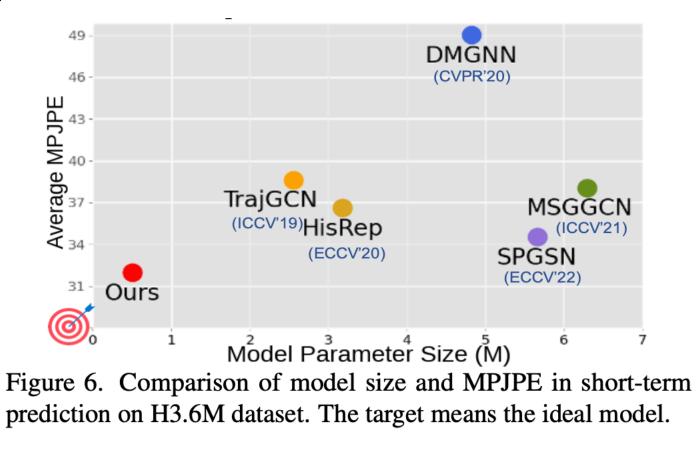
• Scenario IV: Pedestrian Trajectory Prediction


Table 5. Prediction performance on the ETH-UCY dataset. The **bold**/<u>underline</u> font denotes the best/second best result.

		P	erformance	(ADE/FD	E)	
Deterministic	ETH	Hotel	Univ	Zara1	Zara2	Average
S-LSTM [1]	1.09/2.35	0.79/1.76	0.67/1.40	0.47/1.00	0.56/1.17	0.72/1.54
SGAN-ind [20]	1.13/2.21	1.01/2.18	0.60/1.28	0.42/0.91	0.52/1.11	0.74/1.54
Traj++ [55]	1.02/2.00	0.33/0.62	0.53/1.19	0.44/0.99	0.32/0.73	0.53/1.11
TransF [16]	1.03/2.10	0.36/0.71	0.53/1.32	0.44/1.00	0.34/0.76	0.54/1.17
MemoNet [70]	1.00/2.08	0.35/0.67	0.55/1.19	0.46/1.00	0.37/0.82	0.55/1.15
EqMotion(Ours)	0.96/1.92	0.30/0.58	0.50/1.10	0.39/0.86	0.30/0.68	0.49/1.03
Multi-prediction	ETH	Hotel	Univ	Zara1	Zara2	Average
SGAN [20]	0.87/1.62	0.67/1.37	0.76/0.52	0.35/0.68	0.42/0.84	0.61/1.21
NMMP [22]	0.61/1.08	0.33/0.63	0.52/1.11	0.32/0.66	0.43/0.85	0.41/0.82
Traj++ [55]	0.61/1.02	0.19/0.28	0.30/0.54	0.24/0.42	0.18/0.31	0.30/0.51
PECNet [45]	0.54/0.87	0.18/0.24	0.35/0.60	0.22/0.39	0.17/0.30	0.29/0.48
Agentformer [76]	0.45/0.75	0.14/0.22	0.25/ <u>0.45</u>	<u>0.18</u> / 0.30	<u>0.14/0.24</u>	<u>0.23</u> /0.39
GroupNet [69]	0.46/0.73	0.15/0.25	0.26/0.49	0.21/0.39	0.17/0.33	0.25/0.44
MID [18]	0.39 /0.66	<u>0.13</u> /0.22	0.22 / <u>0.45</u>	0.17/0.30	0.13 /0.27	0.21 / <u>0.38</u>
GP-Graph [2]	0.43/ <u>0.63</u>	0.18/0.30	0.24/0.42	0.17 / <u>0.31</u>	0.15/0.29	0.23/0.39
EqMotion(Ours)	<u>0.40</u> / 0.61	0.12/0.18	<u>0.23</u> / 0.43	<u>0.18</u> /0.32	0.13/0.23	0.21/0.35

• Data efficiency


• Data efficiency


of data in short-term prediction on H3.6M dataset.

Outperform SOTA by only 30% data!

• Model Size

• Model Size

Less than 30% of other SOTA models' sizes !

Thanks for your listening!

Question/comments: xcxwakaka@sjtu.edu.cn

Code: https://github.com/MediaBrain-SJTU/EqMotion

Our Team

Chenxin Xu


Robby. T. Tan

Siheng Chen

Yu Guang Wang

Xinchao Wang

Yanfeng Wang

