

LEARNING IMBALANCED DATA WITH VISION TRANSFORMERS

ZHENGZHUO XU, RUIKANG LIU, SHUO YANG, ZENGHAO CHAI, CHUN YUAN.

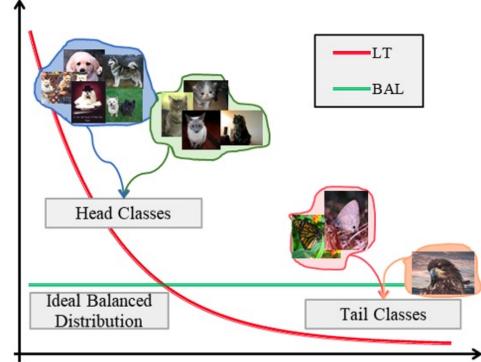
TSINGHUA UNIVERSITY

2023 / 5 / 15

LONG-TAILED RECOGNITION

What is long-tailed recognition?

- Training samples exhibit a long-tailed class distribution, where a small portion of classes have a massive number of sample points but the others are associated with only a few samples.
- The trained model can be easily biased towards head classes with massive training data, leading to poor model performance on tail classes that have limited data.
- Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off the-shelf pretrain weight of ViTs leads to unfair comparisons.



ABSTRACT

We train the vision transformers from scratch with Long-Tailed data.

In summary, our main contributions:

- To our best knowledge, we are the first to investigate training ViTs from scratch with LT data systematically.
- We pinpoint that the masked generative pretraining is robust to LT data, which avoids the toxic influence of imbalanced labels on feature learning.
- With a solid theoretical grounding, we propose the balanced version of BCE loss (Bal-BCE), which improves the vanilla BCE by a large margin in LTR.
- We propose LiVT recipe to train ViTs from scratch, and the performance of LiVT achieves state-of-the-art across various benchmarks for long-tailed recognition.

PREVIOUS RECIPES TO TRAIN VIT-B

- Previous recipes are difficult to train vision transformers.
- Self-supervised training is more robust than label-supervised methods.
- We select masked generative pretraining to learn feature from LT data.

Dataset	ViT	Δ	DeiT III	Δ	MAE	Δ
ImageNet-BAL	38.7	-	67.2	-	69.2	-
ImageNet-LT	31.6	-7.0	48.4	-18.8	54.5	-14.7

Top-I accuracy (%) of different recipes to train ViT-B-I6 from scratch on ImageNet-LT/BAL. All perform much worse on LT than BAL.

START FROM BALANCED CROSS-ENTROPY

- Balanced Cross-Entropy (BalCE) is proposed by Ren et al in NeurIPS 2020, which reweight the softmax logits with training instance numbers.
- If we implement it via logit adjustment, we have the following theorem 1.
- The bias item of logits will be the negative log of the number of training samples.

Theorem 1. Logit Bias of Balanced CE. Let $\pi_{\mathbf{y}_i} = n_{\mathbf{y}_i}/N$ be the training label \mathbf{y}_i distribution. If we implement the balanced cross-entropy loss via logit adjustment, the bias item of logit $\mathbf{z}_{\mathbf{y}_i}$ will be $\mathcal{B}_{\mathbf{y}_i}^{ce} = \log \pi_{\mathbf{y}_i}$, i.e.,

$$\mathcal{L}_{\text{Bal-CE}} = \log[1 + \sum_{\mathbf{y}_j \neq \mathbf{y}_i} e^{\log n_{\mathbf{y}_j} - \log n_{\mathbf{y}_i}} \cdot e^{\mathbf{z}_{\mathbf{y}_j} - \mathbf{z}_{\mathbf{y}_i}}]$$

$$= \log[1 + \sum_{\mathbf{y}_j \neq \mathbf{y}_i} e^{(\mathbf{z}_{\mathbf{y}_j} + \log n_{\mathbf{y}_j}) - (\mathbf{z}_{\mathbf{y}_i} + \log n_{\mathbf{y}_i})}] \quad (3)$$

$$= \log[1 + \sum_{\mathbf{y}_j \neq \mathbf{y}_i} e^{(\mathbf{z}_{\mathbf{y}_j} + \log \pi_{\mathbf{y}_j}) - (\mathbf{z}_{\mathbf{y}_i} + \log \pi_{\mathbf{y}_i})}].$$

BALANCED BINARY CROSS ENTROPY

- Why binary cross-cross-entropy?
 - Generally, Binary Cross-Entropy loss performs better than Cross-Entropy loss when collaborating with ViTs.
 - It fails to catch up with widely adopted Balanced Cross-Entropy loss and shows severe training instability in LTR.
 - Following Ren et al, we add the training instance numbers to the sigmoid logits.

Theorem 2. Logit Bias of Balanced BCE. Let $\pi_{\mathbf{y}_i} = n_{\mathbf{y}_i}/N$ be the class \mathbf{y}_i distribution. If we implement the balanced binary cross-entropy loss via logit adjustment, the bias item of logit $\mathbf{z}_{\mathbf{y}_i}$ will be $\mathcal{B}_{\mathbf{y}_i}^{\text{bce}} = \log \pi_{\mathbf{y}_i} - \log (1 - \pi_{\mathbf{y}_i})$,

$$\mathcal{L}_{\text{Bal-BCE}} = -\sum_{\mathbf{y}_i \in \mathcal{C}} w_i [\mathbb{1}(\mathbf{y}_i) \cdot \log \frac{1}{1 + e^{-[\mathbf{z}_{\mathbf{y}_i} + \log \pi_{\mathbf{y}_i} - \log(1 - \pi_{\mathbf{y}_i})]}} + (1 - \mathbb{1}(\mathbf{y}_i)) \cdot \log(1 - \frac{1}{1 + e^{-[\mathbf{z}_{\mathbf{y}_i} + \log \pi_{\mathbf{y}_i} - \log(1 - \pi_{\mathbf{y}_i})]}})]$$
(6)

A SIMPLE PROOF

We start by revising the sigmoid activation function:

$$\sigma(\mathbf{z}_{\mathbf{y}_i}) = \frac{1}{1 + e^{-\mathbf{z}_{\mathbf{y}_i}}} = \frac{e^0}{e^0 + e^{-\mathbf{z}_{\mathbf{y}_i}}} = \frac{e^{\mathbf{z}_{\mathbf{y}_i}}}{e^{\mathbf{z}_{\mathbf{y}_i}} + e^0}$$

If we view it as the binary version of softmax, e^x (e⁰) will be the normalized probability to indicate yes (no).

$$\hat{\sigma}(\mathbf{z}_{\mathbf{y}_{i}}) = \frac{n_{\mathbf{y}_{i}} \cdot e^{\mathbf{z}_{\mathbf{y}_{i}}}}{n_{\mathbf{y}_{i}} \cdot e^{\mathbf{z}_{\mathbf{y}_{i}}} + (N - n_{\mathbf{y}_{i}}) \cdot e^{0}}$$
$$= \frac{\pi_{\mathbf{y}_{i}} \cdot e^{\mathbf{z}_{\mathbf{y}_{i}}}}{\pi_{\mathbf{y}_{i}} \cdot e^{\mathbf{z}_{\mathbf{y}_{i}}} + (1 - \pi_{\mathbf{y}_{i}}) \cdot e^{0}}$$
$$= \frac{1}{1 + \frac{1 - \pi_{\mathbf{y}_{i}}}{\pi_{\mathbf{y}_{i}}} \cdot e^{-\mathbf{z}_{\mathbf{y}_{i}}}}$$

A SIMPLE PROOF

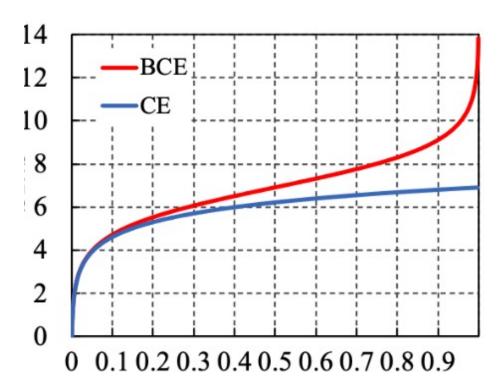
Considering the log-sum-exp for numerical stability:

$$\hat{\sigma}(\mathbf{z}_{\mathbf{y}_{i}}) = \frac{1}{1 + \frac{1 - \pi_{\mathbf{y}_{i}}}{\pi_{\mathbf{y}_{i}}} \cdot e^{-\mathbf{z}_{\mathbf{y}_{i}}}} = \frac{1}{1 + e^{-\mathbf{z}_{\mathbf{y}_{i}} + \log \frac{1 - \pi_{\mathbf{y}_{i}}}{\pi_{\mathbf{y}_{i}}}}}$$
$$= \frac{1}{1 + e^{-\mathbf{z}_{\mathbf{y}_{i}} + \log (1 - \pi_{\mathbf{y}_{i}}) - \log \pi_{\mathbf{y}_{i}}}}$$
$$= \frac{1}{1 + e^{-[\mathbf{z}_{\mathbf{y}_{i}} + \log \pi_{\mathbf{y}_{i}} - \log (1 - \pi_{\mathbf{y}_{i}})]}}$$

Please refer to Supp for another derivation from the Bayesian Theorem perspective.

INTERPRETATION

- Similar to Bal-CE, it enlarges the margins to increase the difficulty of the tail (smaller π_{yi}).
- Bal-BCE further reduces the head (larger π_{yi}) inter-class distances with larger positive values.
- BCE is not class-wise mutually exclusive, and the smaller head inter-class distance helps the networks focus more on the tail's contributions.



PIPELINE

- MGP for feature learning.
 - This stage adopts the masked auto encoder.

Algorit	thm 1 LiVT Training Pipeline.	
-	$\mathcal{D}, \mathscr{F}, \mathscr{W}, \mathscr{D}, T_{pt}, T_{ft}, \mathcal{A}_{pt}, J$ t: Optimized θ_f, θ_w .	$\mathcal{A}_{ft}, \pi_{\mathbf{y}_i}, au$
1: Init	tialize θ_f , θ_d randomly.	⊳ MGP Stage
2: for	$t t = 1$ to T_{pt} do	
3:	for $\{\mathbf{x},\mathbf{y}\}$ sampled from $\mathcal D$ de	D
4:	$\mathbf{x} := \mathcal{A}_{pt}(\mathbf{x})$	
5:	$\hat{\mathbf{x}} = \mathscr{D}\left(\mathscr{F}(\mathbf{M} \odot \mathbf{x} \mid heta_f) \mid ight.$	$\theta_d)$
6:	$\mathcal{L}_{MSE}(\hat{\mathbf{x}},\mathbf{x}) = \hat{\mathbf{x}}-\mathbf{x} _2$	
7:	$\{\theta_f, \theta_d\} \leftarrow \{\theta_f, \theta_d\} - \alpha \nabla$	$\mathcal{L}_{\{\theta_f, \theta_d\}} \cdot \mathcal{L}_{MSE}(\hat{\mathbf{x}}, \mathbf{x})$
8:	end for	
9: enc	d for	

- BFT for unbiased classifier learning.
 - This stage adopts the Bal-BCE loss.

10: Initialize θ_w randomly.	⊳ BFT Stage
11: Calculate logit bias $\mathcal{B}_{\mathbf{y}_i}^{bce}$ via Eq. 10.	
12: for $t=1$ to T_{ft} do	
13: for $\{x, y\}$ sampled from \mathcal{D} do	
14: $\mathbf{x} := \mathcal{A}_{ft}(\mathbf{x})$	
15: $\mathbf{v} = \mathscr{F}(\mathbf{x} \mid \theta_f)$	
16: $\mathbf{z} = \mathscr{W}(\mathbf{v} \mid \theta_w) + \tau \cdot \mathcal{B}^{bce}$	
17: Calculate \mathcal{L}_{BCE} via Eq. 5 with	a calibrated z.
18: $\{\theta_f, \theta_w\} \leftarrow \{\theta_f, \theta_w\} - \alpha \nabla_{\{\theta_f\}}$	$_{f, heta_{w}\}}\cdot\mathcal{L}_{BCE}$
19: end for	
20: end for	

EXPERIMENT

Table 2. Top-1 accuracy (%) of ResNet50 on ImageNet-LT. † indicates results with ResNeXt50. *: training with 384 resolution.

Method	Ref.	Many	Med.	Few	Acc
CE [13]	CVPR 19	64.0	33.8	5.8	41.6
LDAM [4]	NeurIPS 19	60.4	46.9	30.7	49.8
c-RT [29]	ICLR 20	61.8	46.2	27.3	49.6
τ -Norm [29]	ICLR 20	59.1	46.9	30.7	49.4
Causal [54]	NeurIPS 20	62.7	48.8	31.6	51.8
Logit Adj. [47]	ICLR 21	61.1	47.5	27.6	50.1
RIDE(4E)† [61]	ICLR 21	68.3	53.5	35.9	56.8
MiSLAS [80]	CVPR 21	62.9	50.7	34.3	52.7
DisAlign [75]	CVPR 21	61.3	52.2	31.4	52.9
ACE† [3]	ICCV 21	71.7	54.6	23.5	56.6
PaCo† [12]	ICCV 21	68.0	56.4	37.2	58.2
TADE† [77]	ICCV 21	66.5	57.0	43.5	58.8
TSC [36]	CVPR 22	63.5	49.7	30.4	52.4
GCL [35]	CVPR 22	63.0	52.7	37.1	54.5
TLC [33]	CVPR 22	68.9	55.7	40.8	55.1
BCL† [83]	CVPR 22	67.6	54.6	36.6	57.2
NCL [34]	CVPR 22	67.3	55.4	39.0	57.7
SAFA [23]	ECCV 22	63.8	49.9	33.4	53.1
DOC [58]	ECCV 22	65.1	52.8	34.2	55.0
DLSA [69]	ECCV 22	67.8	54.5	38.8	57.5
	ViT-B training	from scr	atch		
ViT [15]	ICLR 21	50.5	23.5	6.9	31.6
MAE [18]	CVPR 22	74.7	48.2	19.4	54.5
DeiT [55]	ECCV 22	70.4	40.9	12.8	48.4
LiVT		73.6	56.4	41.0	60.9
LiVT *	-	76.4	59.7	42.7	63.8

Table 3. Top-1 accuracy (%) of ResNet50 on iNaturalist 2018. *: training with 384 resolution.

Method	Ref.	Many	Med.	Few	Acc
CE [13]	CVPR 19	72.2	63.0	57.2	61.7
OLTR [44]	CVPR 19	59.0	64.1	64.9	63.9
c-RT [29]	ICLR 20	69.0	66.0	63.2	65.2
τ -Norm [29]	ICLR 20	65.6	65.3	65.9	65.6
LWS [<mark>29</mark>]	ICLR 20	65.0	66.3	65.5	65.9
BBN [<mark>81</mark>]	CVPR 20	61.8	73.6	66.9	69.6
BS [51]	ICLR 21	70.0	70.2	69.9	70.0
RIDE(4E) [61]	ICLR 21	70.9	72.5	73.1	72.6
DisAlign [75]	CVPR 21	69.0	71.1	70.2	70.6
MiSLAS [80]	CVPR 21	73.2	72.4	70.4	71.6
DiVE [<mark>21</mark>]	ICCV 21	70.6	70.0	67.6	69.1
ACE(4E) [3]	ICCV 21	-	-	-	72.9
TADE [77]	ICCV 21	74.4	72.5	73.1	72.9
PaCo [<mark>12</mark>]	ICCV 21	70.4	72.8	73.6	73.2
ALA [79]	AAAI 22	71.3	70.8	70.4	70.7
TSC [<mark>36</mark>]	CVPR 22	72.6	70.6	67.8	69.7
LTR-WD [<mark>1</mark>]	CVPR 22	71.2	70.4	69.7	70.2
GCL [<mark>35</mark>]	CVPR 22	67.5	71.3	71.5	71.0
BCL [<mark>83</mark>]	CVPR 22	66.7	71.0	70.7	70.4
NCL [<mark>34</mark>]	CVPR 22	72.0	74.9	73.8	74.2
DOC [<mark>58</mark>]	ECCV 22	72.8	71.7	70.0	71.0
DLSA [<mark>69</mark>]	ECCV 22	-	-	-	72.8
	ViT-B trainin	g from so	cratch		
ViT [15]	ICLR 21	65.4	55.3	50.9	54.6
MAE [<mark>18</mark>]	CVPR 22	79.6	70.8	65.0	69.4
DeiT [<mark>55</mark>]	ECCV 22	72.9	62.8	55.8	61.0
LiVT	-	78.9	76.5	74.8	76.1
LiVT *	-	83.2	81.5	79.7	81.0

Table 4. Top-1 accuracy (%) of ResNet152 (with ImageNet-1K pretrained weight) on Places-LT. *: training with 384 resolution.

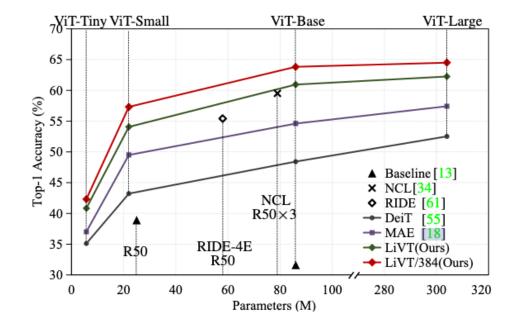
Method	Ref.	Many	Med.	Few	Acc			
CE [13]	CVPR 19	45.7	27.3	8.2	30.2			
Focal [38]	ICCV 17	41.1	34.8	22.4	34.6			
Range [76]	CVPR 17	41.1	35.4	23.2	35.1			
OLTR [44]	CVPR 19	44.7	37.0	25.3	35.9			
FSA [10]	ECCV 20	42.8	37.5	22.7	36.4			
LWS [29]	ICLR 20	40.6	39.1	28.6	37.6			
Causal [54]	NeurIPS 20	23.8	35.8	40.4	32.4			
BS [51]	NeurIPS 20	42.0	39.3	30.5	38.6			
DisAlign [75]	CVPR 21	40.4	42.4	30.1	39.3			
LADE [22]	CVPR 21	42.8	39.0	31.2	38.8			
RSG [59]	CVPR 21	41.9	41.4	32.0	39.3			
TADE [77]	ICCV 21	43.1	42.4	33.2	40.9			
PaCo [12]	ICCV 21	36.1	47.9	35.3	41.2			
ALA [79]	AAAI 22	43.9	40.1	32.9	40.1			
NCL [34]	CVPR 22	-	-	-	41.8			
BF [24]	CVPR 22	44.0	43.1	33.7	41.6			
CKT [48]	CVPR 22	41.6	41.4	35.1	40.2			
GCL [35]	CVPR 22	-	-	-	40.6			
Bread [40]	ECCV 22	40.6	41.0	33.4	39.3			
ViT-B training from scratch								
MAE [18]	CVPR 22	48.9	24.6	8.7	30.3			
DeiT [55]	ECCV 22	51.6	31.0	9.4	34.2			
LiVT	-	48.1	40.6	27.5	40.8			
LiVT *	-	50.7	42.4	27.9	42.6			

EXPERIMENT

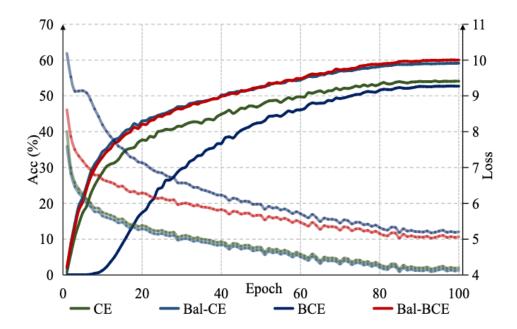
Model	Size	Loss	Many \uparrow	Med. \uparrow	Few ↑	$ $ Acc \uparrow	$ $ ECE \downarrow	$\text{MCE}\downarrow$
ViT-Tiny [55]	5.7M	CE Bal-CE	56.1 48.8 (-7.3)	29.2 39.2 (+10.0)	10.5 28.1 (+17.6)	37.0 41.4 (+4.4)	3.7 2.6 (-1.1)	6.1 4.6 (- 1.6)
		BCE Bal-BCE	42.1 50.6 (+8.4)	11.1 37.2 (+26.1)	0.9 26.1 (+25.2)	21.6 40.8 (+19.2)	2.9 3.1 (+0.1)	8.6 6.8 (-1.8)
ViT-Small [55]	22M	CE Bal-CE	68.9 62.7 (-6.2)	43.1 52.0 (+ 8.9)	17.3 36.3 (+ 19.0)	49.5 54.0 (+4.5)	4.7 0.9 (-3.8)	9.2 2.4 (- 6.8)
	22111	BCE Bal-BCE	62.4 65.8 (+ 3.4)	30.6 50.6 (+20.0)	8.4 32.9 (+ 24.6)	39.8 54.1 (+14.2)	5.7 4.8 (-0.9)	11.1 9.0 (-2.2)
ViT-Base [15]	86M	CE Bal-CE	74.7 70.5 (-4.3)	48.2 56.8 (+8.6)	19.4 43.7 (+ 24.3)	54.5 60.1 (+5.6)	5.1 3.7 (-1.4)	6.8 4.9 (-1.9)
		BCE Bal-BCE	73.7 73.6 (-0.1)	46.5 55.8 (+9.3)	15.6 41.0 (+25.4)	52.4 60.9 (+8.6)	5.6 2.4 (-3.1)	7.9 3.2 (- 4.7)
ViT-Large [15]	304M	CE Bal-CE	77.3 72.7 (-4.5)	51.5 60.1 (+8.6)	21.7 41.9 (+20.3)	57.4 62.1 (+4.8)	3.6 2.1 (-1.5)	7.4 4.2 (-3.2)
		BCE Bal-BCE	74.7 75.3 (+0.6)	46.7 58.8 (+12.1)	17.0 37.5 (+20.5)	53.4 62.6 (+9.2)	8.4 6.6 (-1.8)	15.9 14.8 (-1.1)

Performance on ImageNet-LT with different LT loss.

EXPERIMENT



Top-I Acc v.s. Model size on ImageNet-LT.



Convergence

