

TUE-AM-366

Q-DETR: An Efficient Low-Bit Quantized Detection Transformer

Sheng Xu^{1,†}, Yanjing Li^{1,†}, Mingbao Lin³, Peng Gao⁴, Guodong Guo⁵, Jinhu Lü^{1,2}, Baochang Zhang^{1,2},

¹Beihang University, ²Zhongguancun Laboratory, ³Tencent, ⁴Shanghai Al Laboratory, ⁵UNIUBI Research, Universal Ubiquitous Co.

{shengxu, yanjingli, bczhang}@buaa.edu.cn

CVPR2023 Highlight

Background

Constraint of ViT & DETR Applications: Huge FLOPs

Model	FLOPs	Memory Usage
ViT ^[1] - H	162GB	2528MB
DeiT ^[2] -B	16.8GB	346.2MB
Swin ^[3] -S	8.7GB	199.8MB

Deploying NNs on NVIDIA Jetson TX2 [4] :

non real-time computation

[1] Alexey Dosovitskiy, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929, 2020
[2] Hugo Touvron, Matthieu Cord, et al. Training data-efficient image transformers & distillation through attention. In Proc. of ICML, 2020
[3] Ze Liu, Yutong Lin, et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proc. of ICCV, 2020
[4] https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-tx2/

Baseline of Quantized DETR

1. Quantized DETR scheme

Symmetric weight quantization:

$$\mathbf{w}_{q} = \lfloor \operatorname{clip} \{ \frac{\mathbf{w}}{\alpha_{\mathbf{w}}}, Q_{n}^{\mathbf{w}}, Q_{p}^{\mathbf{w}} \} \rceil,$$
$$Q_{w}(x) = \alpha_{\mathbf{w}} \circ \mathbf{w}_{q},$$

Asymmetric activation quantization:

$$oldsymbol{x}_q = \lfloor \operatorname{clip} \{ rac{(oldsymbol{x} - z)}{lpha_x}, Q_n^x, Q_p^x \}
ceil$$

 $Q_a(x) = lpha_x \circ oldsymbol{x}_q + z,$

Baseline of Quantized DETR

2. Quantized MHA

$$Q-FC(\boldsymbol{x}) = Q_a(\boldsymbol{x}) \cdot Q_w(\boldsymbol{w}) = \alpha_x \alpha_{\boldsymbol{w}} \circ (\boldsymbol{x}_q \odot \boldsymbol{w}_q + z/\alpha_x \circ \boldsymbol{w}_q),$$

$$\begin{aligned} \mathbf{q} &= \mathbf{Q}\text{-FC}(\mathbf{O}), \ \mathbf{k}, \mathbf{v} = \mathbf{Q}\text{-FC}(\mathbf{E}) \\ \mathbf{A}_i &= \operatorname{softmax}(Q_a(\mathbf{q})_i \cdot Q_a(\mathbf{k})_i^\top / \sqrt{d}), \\ \mathbf{D}_i &= Q_a(\mathbf{A})_i \cdot Q_a(\mathbf{v})_i, \end{aligned}$$

Baseline of Quantized DETR

3. Challenge Analysis

Quantizing query, key, value and attention weight brings the most significant drop

(1) Quantizing backbone (2) Quantizing encoder (3) Quantizing MHA of decoder (4) Quantizing MLPs

1. Information Bottleneck of Q-DETR

$$\begin{split} \min_{\theta^{S}} I(X; \mathbf{E}^{S}) &- \beta I(\mathbf{E}^{S}, \mathbf{q}^{S}; \boldsymbol{y}^{GT}) - \gamma I(\mathbf{q}^{S}; \mathbf{q}^{T}) \\ I(\mathbf{q}^{S}; \mathbf{q}^{T}) &= H(\mathbf{q}^{S}) - H(\mathbf{q}^{S} | \mathbf{q}^{T}) \\ \min_{\theta} H(\mathbf{q}^{S^{*}} | \mathbf{q}^{T}), \\ \text{s. t.} \quad \mathbf{q}^{S^{*}} &= \operatorname*{arg\,max}_{\mathbf{q}^{S}} H(\mathbf{q}^{S}) \\ \end{split}$$

2. Distribution Rectification Distillation

Inner-level optimization:

$$H(\mathbf{q}^{\mathcal{S}}) = -\int_{\mathbf{q}_i^{\mathcal{S}} \in \mathbf{q}^{\mathcal{S}}} p(\mathbf{q}_i^{\mathcal{S}}) \log p(\mathbf{q}_i^{\mathcal{S}})$$

$$\begin{split} H(\mathbf{q}^{\mathcal{S}}) &= -\mathbb{E}[\log \mathcal{N}(\mu(\mathbf{q}^{\mathcal{S}}), \sigma(\mathbf{q}^{\mathcal{S}}))] \\ &= -\mathbb{E}[\log [(2\pi\sigma(\mathbf{q}^{\mathcal{S}})^2)^{\frac{1}{2}} \exp(-\frac{(\mathbf{q}_i^{\mathcal{S}} - \mu(\mathbf{q}^{\mathcal{S}}))^2}{2\sigma(\mathbf{q}^{\mathcal{S}})^2})]] \\ &= \frac{1}{2} \log 2\pi\sigma(\mathbf{q}^{\mathcal{S}})^2. \end{split}$$

2. Distribution Rectification Distillation

Upper-level optimization: $G_i = \max_{1 \le j \le N} \text{GIoU}(b_i^{GT}, b_j^{S}),$

$$\begin{split} b_j^{\mathcal{S}} &= \begin{cases} b_j^{\mathcal{S}}, & \operatorname{GIoU}(b_i^{GT}, b_j^{\mathcal{S}}) > \tau G_i, \; \forall \; i \\ \varnothing, & \text{otherwise}, \end{cases} \\ \tilde{c}_j^{\mathcal{T}}, \tilde{b}_j^{\mathcal{T}} &= \operatorname*{arg\,max}_{\tilde{c}_k^{\mathcal{T}}, \tilde{b}_k^{\mathcal{T}}} \sum_{k=1}^N \mu_1 \operatorname{GIoU}(\tilde{b}_j^{\mathcal{S}}, b_k^{\mathcal{T}}) - \mu_2 \| \tilde{b}_j^{\mathcal{S}} - b_k^{\mathcal{T}} \|_1, \end{split}$$

$$\mathcal{L}_{DRD}(\tilde{\mathbf{q}}^{\mathcal{S}^*}, \tilde{\mathbf{q}}^{\mathcal{T}}) = \mathbb{E}[\|\tilde{\mathbf{D}}^{\mathcal{S}^*} - \tilde{\mathbf{D}}^{\mathcal{T}}\|_2],$$

Experiments and Results

Ablation Study

Table 1. Evaluating the components of Q-DETR-R50 on the VOC dataset. #Bits (W-A-Attention) denotes the bit-width of weights, activations, and attention activations. DA denotes the distribution alignment module. FQM denotes foreground-aware query matching.

Method	#Bits	AP_{50}	#Bits	AP_{50}	#Bits	AP_{50}
Real-valued	32-32-32	83.3	-	-	-	-
Baseline	4-4-8	78.0	3-3-8	76.8	2-2-8	69.7
+DA	4-4-8	78.8	3-3-8	78.0	2-2-8	71.6
+FQM	4-4-8	81.5	3-3-8	80.9	2-2-8	74.9
+DA+FQM (Q-DETR)	4-4-8	82.7	3-3-8	82.1	2-2-8	76.4

Figure 5. (a) We select τ and λ using 4-bit Q-DETR-R50 on VOC. (b) The mutual information curves of $I(X; \mathbf{E})$ and $I(\mathbf{y}^{GT}; \mathbf{E}, \mathbf{q})$ (Eq. 4) on the information plane. The red curves represent the teacher model (DETR-R101). The orange, green, red, and purple lines represent the 4-bit baseline, 4-bit baseline + DA, 4-bit baseline + FQM, and 4-bit baseline + DA + FQM (4-bit Q-DETR).

Experiments and Results

Main Results on VOC

Model	Method	#Bits	AP	AP_{50}	AP ₇₅
DETR REG	Real-valued	32-32-32	59.5	83.3	64.7
	Percentile	000	54.7	79.2	60.1
	VT-PTQ	0-0-0	57.6	82.3	63.1
	LSQ		49.7	76.9	53.0
	Baseline	4-4-8	51.3	78.0	54.1
	Q-DETR		57.1	82.7	61.5
DEIR-R30	LSQ		47.0	75.3	49.1
	Baseline	3-3-8	49.2	76.8	51.8
	Q-DETR		56.8	82.1	61.2
	LSQ	an 191 ce	42.6	68.2	44.8
	Baseline	2-2-8	44.0	69.7	45.8
	Q-DETR		50.7	76.4	54.1
	Real-valued	32-32-32	56.7	83.7	62.0
	Percentile	000	54.7	79.2	60.1
	VT-PTQ	0-0-0	55.9	83.0	61.3
	LSQ		49.6	78.6	53.4
SMCA-DETR	Baseline 4-4-8		50.7	79.5	55.4
	Q-DETR		56.2	83.3	61.6
-R50	LSQ		47.7	76.5	51.7
	Baseline	ne 3-3-8		77.5	53.6
	Q-DETR		54.3	82.6	59.5
	LSQ		42.3	69.7	44.8
	Baseline	2-2-8	43.9	70.4	46.1
	Q-DETR		50.2	76.7	52.6

For DETR-R50:

- compared with
 - the 8-bit PTQ method, our 4-bit Q-DETR achieves a much larger compression ratio than 8-bit VT-PTQ, but with a bit of performance improvement (82.7% vs. 82.3%).
- Q-DETR-R50 boosts the performance of 2/3/4-bit baseline by 6.7%, 5.3% and 4.7% AP with the same architecture and bit-width

For SMCA-DETR-R50:

- Q-DETR with SMCA-DETR-R50 outperforms the 2/3/4-bit Baseline method by **6.3%**, **5.1% and 3.8%** on AP50, a large margin.
- Compared with 8-bit post-training quantization methods, our method achieves a significantly higher compression rate and comparable performance

Experiments and Results

Main Results on COCO

Model	Method	#Bits	Size(MB)	OPs(G)	AP	AP_{50}	AP ₇₅	AP_s	AP_m	AP_l
-	Real-valued	32-32-32	159.32	85.51	42.0	62.4	44.2	20.5	45.8	61.1
	Percentile	8-8-8	39.83	23.01	38.6	-	2	-	-	-
	VT-PTQ				41.2	-	-	-	-	-
	LSQ				33.3	53.7	33.9	12.8	37.0	51.6
	Baseline	4-4-8	19.92	13.02	34.1	55.3	35.4	14.3	38.0	53.8
	Q-DETR				39.4	60.2	41.4	17.7	43.4	59.9
DEIR-RJ0	LSQ				31.0	52.3	32.1	11.3	33.9	48.5
-	Baseline	3-3-8	15.03	7.61	32.3	52.2	32.9	12.3	35.4	50.3
	Q-DETR				36.1	55.9	37.5	14.6	39.4	55.2
	LSQ	2-2-8	10.03	5.32	24.7	44.6	26.5	6.3	25.3	42.7
	Baseline				26.6	46.6	26.5	8.4	28.2	44.4
	Q-DETR				31.4	51.3	31.6	11.6	34.3	49.6
	Real-valued	32-32-32	164.75	86.65	41.0	62.2	43.6	21.9	44.3	59.1
	Percentile	8-8-8	41.19	23.66	37.5	58.5	40.1	17.6	39.1	55.9
	VT-PTQ				40.2	61.0	42.6	20.3	42.9	57.7
	LSQ	4-4-8	20.59	13.48	33.9	55.0	35.0	13.2	37.2	51.4
SMCA-DETR-R50	Baseline				35.0	56.4	36.4	15.6	38.3	52.5
	Q-DETR				38.3	59.7	39.8	17.7	41.7	56.8
	LSQ	3-3-8	15.68	8.05	30.1	52.6	31.4	11.9	33.4	46.6
	Baseline				31.8	53.7	32.6	12.6	35.2	49.8
	Q-DETR				35.0	56.3	36.9	15.0	39.0	53.1
	LSQ				23.9	42.2	24.2	9.4	26.2	37.5
	Baseline	2-2-8	10.84	4.54	25.4	44.3	25.2	8.4	27.2	40.3
	Q-DETR				30.5	51.8	31.8	12.0	33.2	48.0

For DETR-R50:

- Q-DETR-R50 boosts the performance of 2/3/4-bit baseline by 4.8%, 3.8% and 5.1% AP with the same architecture and bit-width
- 2/3/4-bit Q-DETR-R50 achieves computation acceleration and storage savings by 16.07x/11.23x/6.57x and 15.88x/10.60x/7.99x, compared to real-valued ones.

For SMCA-DETR-R50:

 4-bit Q-SMCA-DETR-R50 theoretically accelerates 6.42x with only a 2.7% performance gap compared with the real-valued counterpart

Conclusion

- This paper introduces a novel method for training quantized DETR (Q-DETR) with knowledge distillation to rectify the query distribution.
- Q-DETR generalizes the information bottleneck (IB) principle and leads a bi-level distribution rectification distillation. We effectively employ a distribution alignment module to solve inner-level and a foreground-aware query matching scheme to solve upper level.
- As a result, Q-DETR significantly boosts performance of lowbit DETR. Extensive experiments show that Q-DETR surpasses state-of-the-arts in DETR quantization.

Thank you for listening

