

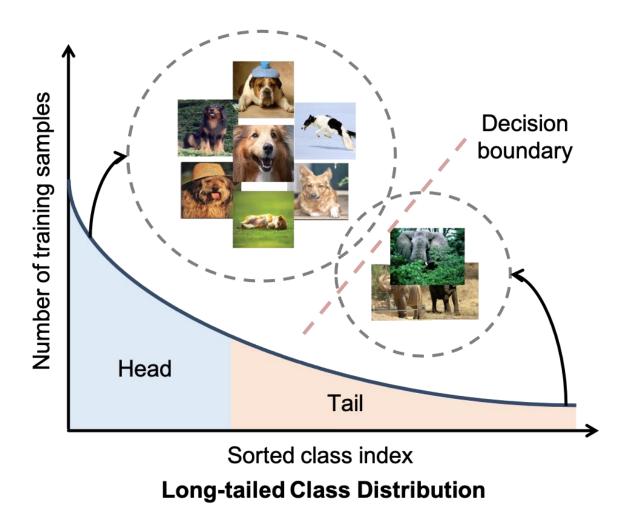
Class-Conditional Sharpness-Aware Minimization for Deep Long-Tailed Recognition

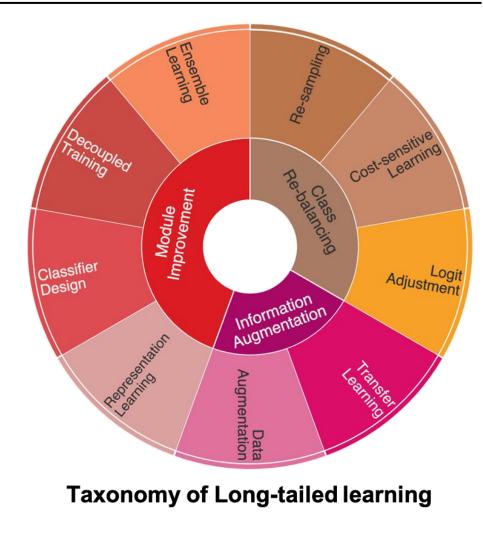
Zhipeng Zhou¹*, Lanqing Li^{2,4}*, Peilin Zhao³, Pheng-Ann Heng², Wei Gong¹

¹University of Science and Technology of China, ²The Chinese University of Hong Kong, ³Tencent Al Lab, ⁴Zhejiang Lab

Poster: # TUE-AM-333

Introduction





• Borrow from ^[1]

• We use **DLTR** short for **D**eep Long-Tailed **R**ecognition

[1] Deep Long-Tailed Learning: A Survey. IEEE TPAMI, 2022.

Introduction

- Cost Sensitive Re-balancing: LDAM-DRW^[1](NeurIPS'19), BalancedSoftmax^[2](NeurIPS'20)
 - Loss function
- Augmentation-based Re-balancing: M2m^[3](CVPR'20), RSG^[4](CVPR'21)
 - Data generation
- **Decoupling-based**: MiSLAS^[5](CVPR'21), GCL^[6](CVPR'22)
 - Representation

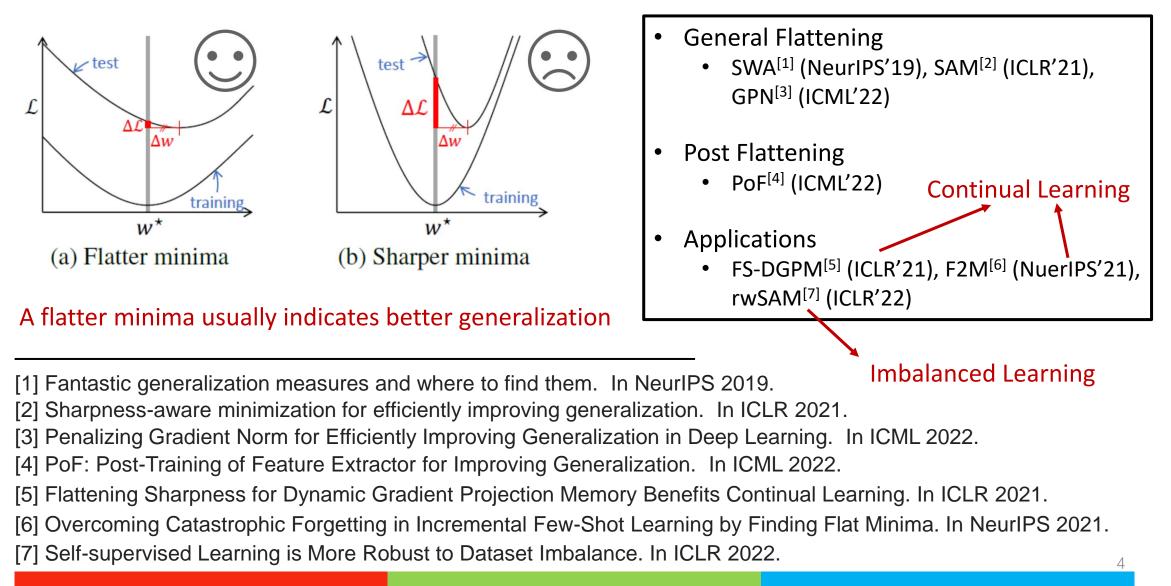
But seldom works research on parameter perturbation

[1] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. In NeurIPS 2019.

- [2] Balanced Meta-Softmax for Long-Tailed Visual Recognition. In NeurIPS 2020.
- [3] M2m: Imbalanced Classification via Major-to-minor Translation. In CVPR 2020.
- [4] RSG: A Simple but Effective Module for Learning Imbalanced Datasets. In CVPR 2021.
- [5] Improving Calibration for Long-Tailed Recognition. In CVPR 2021.
- [6] GCL: Long-tailed Visual Recognition via Gaussian Clouded Logit Adjustment. In CVPR 2022.

Introduction

Parameter Perturbation Solutions in General Optimization Problem



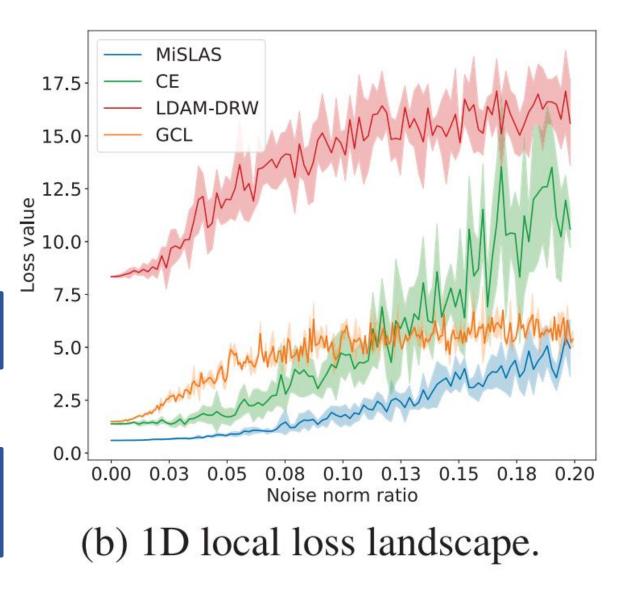
Are current DLTR models have flat minima?

Motivation

- We investigate the local minima status of mainstream DLTR models:
 - ERM (CE), LDAM-DRW, MISLAS, GCL
- We randomly perturbate the trained model
 5 times and observe their vary loss values.

The loss function values of LDAM-DRW and GCL fluctuate more than CE.

LDAM-DRW and GCL have sharper minima than CE, which indicates a castle of DLTR models lack of flat minima.



Motivation

Can current flattening operations help?

- We investigate **4** popular flattening operations:
 - SWA^[1], Spectral Normalization (SN)^[2], Gradient Penalization (GP)^[3], Model Perturbation (MP)^[4]

The results demonstrate that a naïve integration of general flattening operations with DLTR models can hardly bring improvements.

■ SWA ■ SN.1 ■ SN.2 ■ SN.1.2 ■ GP.1 ■ GP.2 ■ GP.1.2 ■ MP.1 ■ MP.2 ■ MP.1.2

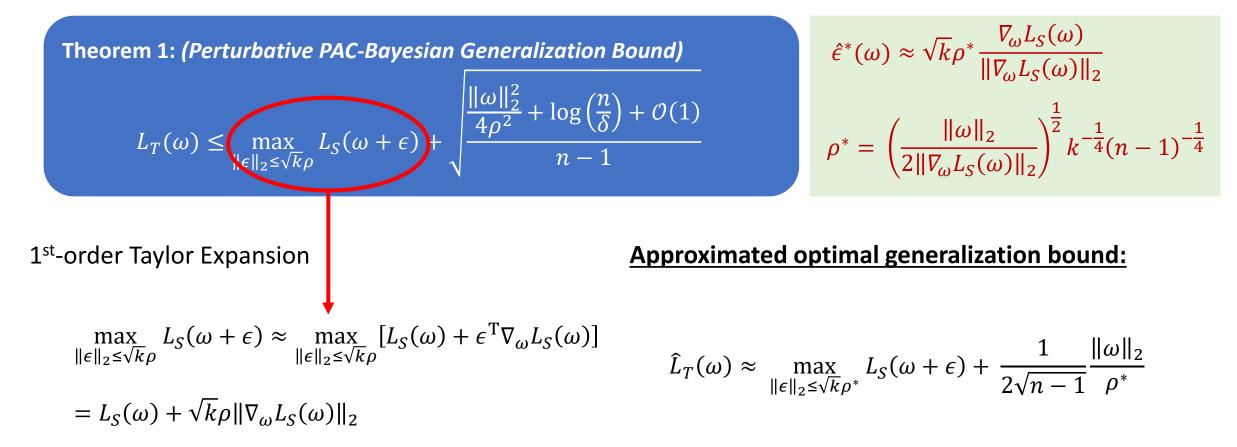
[1] Asymmetric valleys: Beyond sharp and flat local minima. In NeurIPS 2019.

- [2] Large-scale gan training for high fidelity natural image synthesis . In ICLR 2019.
- [3] Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning. In ICML 2022.

[4] Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima. In NeurIPS 2021. 7

Framework

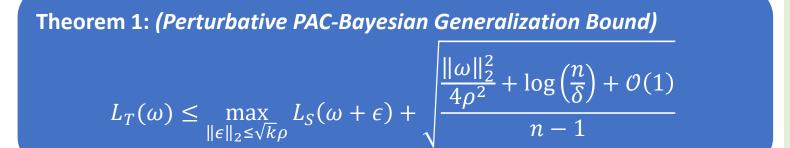
A Close Look at the *Characteristic Radius* of Flat Minima:



More details please refer to our paper!

Framework

A Close Look at the *Characteristic Radius* of Flat Minima:



$$\hat{\epsilon}^*(\omega) \approx \sqrt{k}\rho^* \frac{\nabla_{\omega} L_S(\omega)}{\|\nabla_{\omega} L_S(\omega)\|_2}$$
$$\rho^* = \left(\frac{\|\omega\|_2}{2\|\nabla_{\omega} L_S(\omega)\|_2}\right)^{\frac{1}{2}} k^{-\frac{1}{4}} (n-1)^{-\frac{1}{4}}$$

In long-tailed problem:

Class-Conditional Perturbation:

$$p_s(y) \neq p_t(y)$$
 X
 $p_s(x|y) = p_t(x|y)$ V

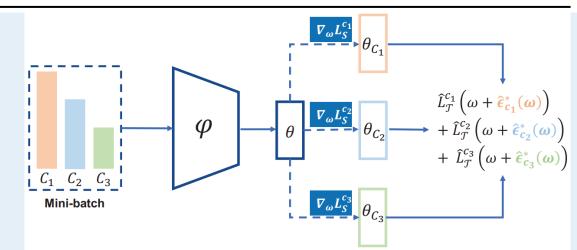
$$\hat{\epsilon}_{c}^{*}(\omega) \approx \sqrt{k}\rho_{c}^{*} \frac{\nabla_{\omega}L_{S}^{c}(\omega)}{\left\|\nabla_{\omega}L_{S}^{c}(\omega)\right\|_{2}}$$
$$\rho_{c}^{*} = \left(\frac{\left\|\omega\right\|_{2}}{2\left\|\nabla_{\omega}L_{S}^{c}(\omega)\right\|_{2}}\right)^{\frac{1}{2}} k^{-\frac{1}{4}}(n_{c}-1)^{-\frac{1}{4}}$$

Framework

<u>Stage 1</u>

$$\hat{\epsilon}_{c}^{*}(\omega) \approx \sqrt{k}\rho_{c}^{*} \frac{\nabla_{\omega}L_{S}^{c}(\omega)}{\left\|\nabla_{\omega}L_{S}^{c}(\omega)\right\|_{2}}$$

$$\omega \leftarrow \omega - \eta \nabla_{\omega} L_{S}^{\text{CC-SAM}}(\omega)$$
$$\approx \omega - \eta \sum_{c=1}^{k} \nabla_{\omega} \hat{L}_{T}^{c}(\omega) \Big|_{\omega + \hat{\epsilon}_{c}^{*}(\omega)}$$

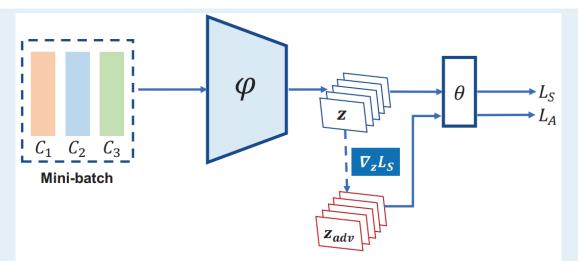


(a) **Stage 1**: Class-conditional sharpness-aware minimization. We take three classes and classifier perturbation as examples for illustration.

<u>Stage 2</u>

$$z_{adv} \approx z + \lambda \frac{\nabla_{\!\! z} L_S(z;\theta)}{\|\nabla_{\!\! z} L_S(z;\theta)\|_2}$$

$$L = \left(1 - \frac{t}{T}\right)L_S + \frac{t}{T}L_A, L_A = h(z_{adv}; \theta)$$



(b) **Stage 2**: Robust training of the classifier by progressively generating adversarial features.

Evaluation

	CIFAR-10-LT			CIFAR-100-LT		
Imbalance Ratio	200	100	50	200	100	50
СЕ	65.68	70.70	74.81	34.84	38.43	43.90
CE + Mixup [57]	65.84	72.96	79.48	35.84	40.01	45.16
LDAM-DRW [7]	73.52	77.03	81.03	38.91	42.04	47.62
De-confound-TDE [45]	-	80.60	83.60	-	44.15	50.31
CE + Mixup + cRT [20]	73.06	79.15	84.21	41.73	45.12	50.86
BBN [63]	73.47	79.82	81.18	37.21	42.56	47.02
Contrastive Learning [51]	-	81.40	85.36	-	46.72	51.87
BGP [49]	-	-	-	41.20	45.20	50.50
MiSLAS [62]	77.31	82.06	85.16	42.33	47.50	52.62
VS + SAM [38]	-	82.40	-	-	46.60	-
GCL [26]	<u>79.03</u>	82.68	<u>85.46</u>	<u>44.88</u>	<u>48.71</u>	<u>53.5</u>
CC-SAM	80.94	83.92	86.22	45.66	50.83	53.9

CC-SAM achieves the state-of-the-art performance

Evaluation

Dataset	Method	Backbone	Many	Medium	Few	Overall
	CE	ResNeXt-50	65.9	37.5	7.7	44.4
	Decouple- τ -norm [20]	ResNet-50	56.6	44.2	27.4	46.7
	Balanced Softmax [40]	ResNeXt-50	64.1	48.2	33.4	52.3
	LADE [17]	ResNeXt-50	64.4	47.7	34.3	52.3
	RSG [50]	ResNeXt-50	63.2	48.2	32.2	51.8
ImageNet-LT	DisAlign [58]	ResNet-50	61.3	52.2	31.4	52.9
-		ResNeXt-50	62.7	52.1	31.4	53.4
	ResLT [9]	ResNeXt-50	63.0	53.3	35.5	52.9
	BGP [49]	ResNet-50	-	-	-	51.5
	MiSLAS [62]	ResNet-50	-	-	-	52.7
	LDAM-DRW + SAM [38]	ResNet-50	62.0	52.1	34.8	53.1
	GCL [26]	ResNet-50	-	-	-	<u>54.9</u>
	CC-SAM	ResNet-50	61.4	49.5	<u>37.1</u>	52.4
		ResNeXt-50	63.1	53.4	41.1	55.4
	CE	ResNet-152	45.7	27.3	8.2	30.2
	Decouple- τ -norm [20]	ResNet-152	37.8	40.7	31.8	37.9
	Balanced Softmax [40]	ResNet-152	42.0	39.3	30.5	38.6
	LADE [17]	ResNet-152	42.8	39.0	31.2	38.8
	RSG [50]	ResNet-152	41.9	41.4	32.0	39.3
Places-LT	DisAlign [58]	ResNet-152	40.4	42.4	30.1	39.3
	ResLT [9]	ResNet-152	39.8	43.6	31.4	39.8
	MiSLAS [62]	ResNet-152	-	-	-	40.2
	GCL [26]	ResNet-152	-	-	-	40.6
	CC-SAM	ResNet-152	41.2	42.1	36.4	40.6
	CE	ResNet-50	72.2	63.0	57.2	61.7
iNaturalist 2018	Decouple- τ -norm [20]	ResNet-50	65.6	65.3	65.9	65.6
	Balanced Softmax [40]	ResNet-50	-	-	-	70.6
	LADE [17]	ResNet-50	-	-	-	70.0
	RSG [50]	ResNet-50	-	-	-	70.3
	DisAlign [58]	ResNet-50	-	-	-	70.6
	ResLT [9]	ResNet-50	-	-	-	70.2
	BGP [49]	ResNet-50	<u>70.0</u>	69.9	69.6	70.5
	MiSLAS [62]	ResNet-50	-	-	-	<u>71.6</u>
	LDAM-DRW + SAM [38]	ResNet-50	64.1	<u>70.5</u>	<u>71.2</u>	70.1
	GCL [26]	ResNet-50	-	-	-	72.0
	CC-SAM	ResNet-50	65.4	70.9	72.2	70.9

• CC-SAM shows competitive on large scale datasets.

CC-SAM generally improves medium and tail classes.

 As a theoretical motivated variant, CC-SAM outperforms the naïve application of SAM, which demonstrates the superiority of class-conditional perturbation.

Evaluation

	ImageNet-LT			Places-LT				
Method	Many	Medium	Few	F-measure	Many	Medium	Few	F-measure
СЕ	40.1	10.4	0.4	0.295	45.9	22.4	0.4	0.366
Lifted Loss [36]	34.8	29.3	17.4	0.374	41.0	35.2	23.8	0.459
Focal Loss [28]	35.7	29.3	15.6	0.371	41.0	34.8	22.3	0.453
Range Loss [59]	34.7	29.4	17.2	0.373	41.0	35.3	23.1	0.457
OpenMax [3]	35.8	30.0	17.6	0.368	41.1	35.4	23.2	0.458
OLTR [32]	41.9	33.9	17.4	0.474	44.6	36.8	25.2	0.464
IEM [65]	46.1	42.3	20.1	0.525	48.8	42.4	28.9	0.486
LUNA [5]	48.2	44.7	23.6	0.579	48.1	41.6	29.0	<u>0.491</u>
CC-SAM	61.4	49.5	37.1	<u>0.552</u>	41.2	41.8	36.4	0.510

OLTR evaluation^[1] demonstrates CC-SAM learns a robust representation

[1] Open Long-Tailed Recognition In A Dynamic World. IEEE TPAMI, 2022.

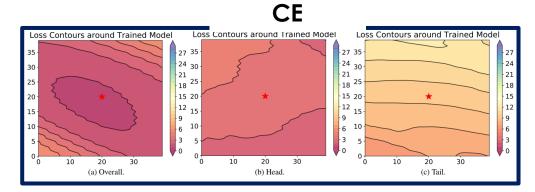
Micro Benchmark

cRT	Stage 1 + dir	Stage 1 + mag	Stage 2	Acc
1				37.8
~	~			38.9
~		v		37.5
~	 ✓ 	v		40.1
/	~	✓	~	40.6

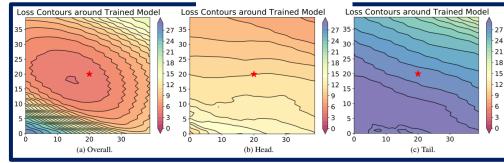
Both magnitude and direction contribute to the performance, which demonstrates the superiority of our derived classconditional perturbation.

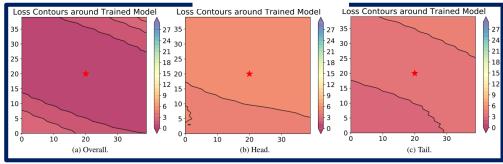
- **Stage 1 + dir**: enforce parameter perturbation along the recommended direction with magnitude of 1.
- **Stage 1 + mag**: enforce perturbation with the recommended magnitude in a random direction.

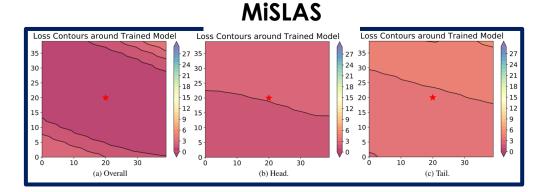
Visualization



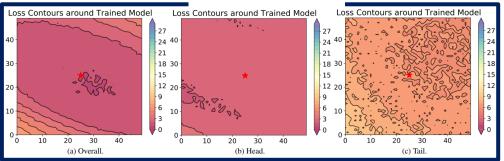
LDAM-DRW



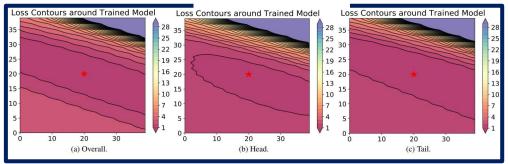




GCL



CCSAM



Thanks for your listening!

Contact Information

Feel free to contact us if you are interested in our work!

zzp1994@mail.ustc.edu.cn, lanqingli1993@gmail.com

github.com/zzpustc/CC-SAM Poster: # TUE-AM-333