

Planning-oriented Autonomous Driving

Yihan Hu*, Jiazhi Yang*, Li Chen*, Keyu Li*,

Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai Wang, Lewei

Lu, Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, Hongyang Li

¹ Shanghai AI Lab, ² Wuhan University, ³ SenseTime Research

Poster: THU-AM-131

Brief Overview

- **Planning-oriented Philosophy**: An end-to-end autonomous driving framework in pursuit of safe-planning, facilitated with various well-organized AD tasks.
- Unified Query design: Queries as interfaces to coordinate all tasks in training and transmit upstream knowledge to planner.
- **SOTA Performance** with vision-only input: SOTAs on all tasks, even surpassing LiDAR-based framework in planning.

(a) Standalone Models

- Typical industrial solutions
- Independent teams for module developments
- Severe error accumulation and feature misalignment X

Apollo 8.0 https://github.com/ApolloAuto/apollo

(b) Multi-task Framework

- Shared feature extraction for multiple tasks
- Easily extended to more tasks, and saving compute 🗸
- Inefficient tasks' coordination 🗙

Object Detection Task	Traffic Lights Task	Lane Prediction		
cls reg attr	cis reg attr	reg		
Decoder Trunk	Decoder Trunk	Fully Connected		
<u>↑</u>	 ↑	Î		
	multi-scale features			
	BIFPN			
	RegNet			
	raw			

Tesla Al Day 2021

(c.1) End-to-end Framework - Vanilla Solutions

- **Directly learn planning** from sensor inputs, no intermediate tasks involved
- Simple network design with good performance in carla simulator 🗸
- Deficient in interpretability 🗙

TCP, NeurIPS 2022. SH AI Lab

(c.2) End-to-end Framework - Explicit Design

- Introducing **intermediate tasks** to assist planning
- Better interpretability 🔽
- Some crucial components are missing 🗙

Design	Approach	Perception Det. Track		n Map	Prediction Motion Occ.		Plan
(c.2)	PnPNet [†] [50] ViP3D [†] [30] P3 [72] MP3 [11] ST-P3 [37] LAV [15]		<i>\</i> <i>\</i>	√ √ √	\$ \$ \$	\$ \$ \$	5 5 5

P3, ECCV 2020. Uber

ST-P3, ECCV 2022. SH AI Lab

Motivation - Towards Reliable Planning

Planning-oriented Design (Ours)

- Jointly optimizing five essential AD tasks to facilitate planning 🔽
- Efficient tasks' coordination with unified queries as interfaces V
- Diverse **knowledge** from upstream tasks is **transmitted** to planner **V**

Which tasks?

How to construct?

How to train?

UniAD - Which Tasks?

• Learn from industrial system

UniAD - How to Construct?

UNE 18-22, 2023

UniAD - How to Construct?

Map Q: one query for one map element

Unified Query

- Occ *Q*: one query for one BEV grid

Each tasks module is a **transformer-based** structure, with:

- Attention mechanisms model complex relations in the scene
- *Queries* interact between tasks modules and transmit upstream knowledge to final planner.

BEV Encoder - BEVFormer (ECCV 2022)

- BEVFormer is a strong BEV encoder with effective **spatial and temporal** feature extraction
- You can easily replace it with other advanced BEV encoders

TrackFormer - Modified from MOTR (ECCV 2022)

• End-to-end trainable tracking without post-association

MapFormer - Modified from Panoptic SegFormer (CVPR 2022)

• Each query represents a map element

- Various **relation modelings** via attentions:
 - Agent-agent, agent-map, agent-goal point
- Non-linear optimization: Adjust the ground-truth trajectory according to upstream predictions

UniAD - Prediction

OccFormer (Ours)

- Encode agent-wise knowledge into the scene representation
- Predicted **occupancy as attention mask** for concentrating the interactions between the agents and their corresponding BEV features.

UniAD - Planning

Planner (Ours)

- **Sdc query:** consistently modeling self-car in TrackFormer and MotionFormer, and is passed to Planner
- **Collision optimization:** Steer the predicted trajectories clear of occupied areas to avoid potential collisions

Two phases training. Perception stage + End-to-end stage

- The stabilized perception capability helps the end-to-end stage **converge faster**

Shared matching. Matching results of tracking reused in motion and occupancy

- Consistent learning of agent identities

UniAD - Results

ID			Modules			[Tracking		Map	oping	Mot	ion Forecasting			Occupanc	y Prediction	ı	Pla	nning
ID	Track	Map	Motion	Occ.	Plan	AMOTA↑	AMOTP↓	IDS↓	IoU-lane↑	IoU-road↑	minADE↓	minFDE↓	$MR \!\!\downarrow$	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑	avg.L2↓	avg.Col.↓
0*	1	1	1	1	1	0.356	1.328	893	0.302	0.675	0.858	1.270	0.186	55.9	34.6	47.8	26.4	1.154	0.941
1	1					0.348	1.333	791	-	2 -		-	-	-	-	-	(_)	-	-
2		1				-	-	-	0.305	0.674	-	7		-	-	-	-	(a)	170
3	1	1				0.355	1.336	<u>785</u>	0.301	0.671	-0	-	-	-	-	-	-	-	-
4			1			-	-	-	-	-	0.815	1.224	0.182	-	-	-	-	-	-
5	1		1			0.360	1.350	919	-	-	0.751	1.109	0.162		-	15	57.0	1.5	-
6	1	1	~			0.354	1.339	820	0.303	0.672	0.736(-9.7%)	1.066(-12.9%)	0.158	-	-	-	-	-	-
7				1		-	-	-	-	-		-	-	60.5	37.0	52.4	29.8	-	-
8	1			1		0.360	1.322	809	-	-		-	-	<u>62.1</u>	38.4	52.2	32.1	-	-
9	1	1	1	1		0.359	1.359	1057	0.304	0.675	0.710 (-3.5%)	1.005(-5.8%)	0.146	62.3	<u>39.4</u>	53.1	<u>32.2</u>	-	-
10					1		-	~	-		-	-	-	-	-	-	-	1.131	0.773
11	1	1	1		1	0.366	1.337	889	0.303	0.672	0.741	1.077	0.157	-	-	-	-	<u>1.014</u>	0.717
12	1	1	1	1	1	0.358	<u>1.334</u>	641	0.302	0.672	0.728	1.054	0.154	62.3	39.5	<u>52.8</u>	32.3	1.004	0.430

Conclusion:

- **ID. 4-6:** Track & Map \rightarrow Motion
- **ID. 7-9:** Motion \leftrightarrow Occupancy
- ID. 10-12: Motion & Occupancy \rightarrow Planning

		Planning						
Mathad		L2($m)\downarrow$		Col. Rate(%)↓			
Method	1s	2s	3s	Avg.	1s	2s	3s	Avg.
NMP [†] [88]	-	-	2.31	-	-	-	1.92	-
SA-NMP [†] [88]	-	-	2.05	-	-	-	1.59	-
FF [†] [36]	0.55	1.20	2.54	1.43	0.06	0.17	1.07	0.43
EO [†] [42]	0.67	1.36	2.78	1.60	0.04	0.09	0.88	0.33
ST-P3 [37]	1.33	2.11	2.90	2.11	0.23	0.62	1.27	0.71
UniAD	0.48	0.96	1.65	1.03	0.05	0.17	0.71	0.31

†: LiDAR-based

Even outperforms LiDAR-based counterparts

Mu	Multi-object Tracking						
Method	AMOTA↑	AMOTP↓	Recall↑	IDS			
Immortal Tracker [†] [82]	0.378	1.119	0.478	936			
ViP3D [30]	0.217	1.625	0.363	-			
QD3DT [35]	0.242	1.518	0.399	-			
MUTR3D [91]	0.294	1.498	0.427	3822			
UniAD	0.359	1.320	0.467	906			

	Mapping					
Method	Lanes↑	Drivable↑	Divider↑	Crossing↑		
VPN [63]	18.0	76.0	-	-		
LSS [66]	18.3	73.9	-	-		
BEVFormer [48]	23.9	77.5	-	-		
BEVerse [†] [92]	-	-	30.6	17.2		
UniAD	31.3	69.1	25.7	13.8		

	Motion Fo	precasting		
Method	$\min ADE(m)\downarrow$	$\min FDE(m)\downarrow$	MR↓	EPA↑
PnPNet [†] [50]	1.15	1.95	0.226	0.222
ViP3D [30]	2.05	2.84	0.246	0.226
Constant Pos.	5.80	10.27	0.347	-
Constant Vel.	2.13	4.01	0.318	-
UniAD	0.71	1.02	0.151	0.456

	Occupancy Prediction							
Method	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑				
FIERY [34]	59.4	36.7	50.2	29.9				
StretchBEV [1]	55.5	37.1	46.0	29.0				
ST-P3 [37]	-	38.9	-	32.1				
BEVerse [†] [92]	61.4	40.9	54.3	36.1				
UniAD	63.4	40.2	54.7	33.5				

_

UniAD - Visualizations

Planner attends to crucial areas in complex scenes

UniAD - Recover from Upstream Errors

Planning Attention

Planner could still attend to 'undetected' regions/objects

Planning-oriented Autonomous Driving

Thanks

Arxiv

OpenDriveLab

Code

Poster: THU-AM-131

