

Rate Gradient Approximation Attack Threats Deep Spiking Neural Networks

Tong Bu, Jianhao Ding, Zecheng Hao, Zhaofei Yu*

Peking University

Quick Summary

1. Converted SNN and surrogate-trained SNN are rate encoded.

2. Rate Gradient Approximation Attack is a strong and robust attack.

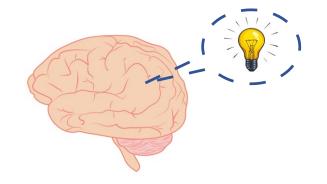
3. SNNs composed of LIF cannot provide strong enough security.

Overview

What is Spiking Neural Network?

- Bio-inspired neural networks
- Convey Information through discrete spike train
- Discrete representation and event-driven

What is the motivation?



- When SNNs are applied to safety-critical systems, the reliability of SNNs should be a major concern. The adversarial attack is one of the most significant categories that threatens model security.
- Previous researches believed that SNNs have the natural ability to defense adversarial attacks (Nonlinearity of LIF neuron and sparsity of Poisson coding [2]).
- Do such spiking neural networks contain temporal information? Attacks may be performed over firing rates.
- For SNNs, the BPTT based attack through a surrogate function may give a false sense of security for SNNs.

Speaker: Tong Bu

Brainstorm

Does well-trained SNNs contain timing information?

- We random shuffled each neuron's output spike firing order so that the spike trains contain no temporal information.
- We then compare whether the performance is influenced after spike shuffle.

Results

- On both CIFAR and DVS-CIFAR dataset, the performance will not degrade after spike shuffle
- We found that both converted SNNs and surrogate trained SNNs are rate encoded.

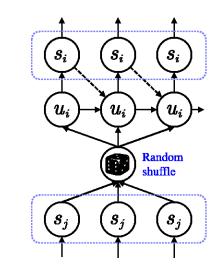


Table 1. Performance before and after the spike shuffle

Dataset	Training Method	Т	λ	Reset	Clean Acc.	Shuffled Acc.	Rate
CIFAR-10	ANNSNN	16	1.0	soft	93.25	93.358	\checkmark
CIFAR-10	STBP	8	1.0	soft	92.75	92.086	\checkmark
CIFAR-10	STBP	8	1.0	hard	93.06	92.214	\checkmark
CIFAR-10	STBP	8	0.9	hard	93.03	92.545	\checkmark
CIFAR-10	STBP	8	0.5	hard	91.48	91.225	\checkmark
CIFAR10-DVS	STBP	10	0.9	hard	77.00	75.400	\checkmark

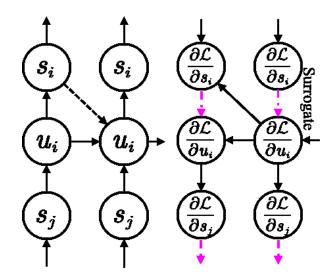
Speaker: Tong Bu

2023/6/2

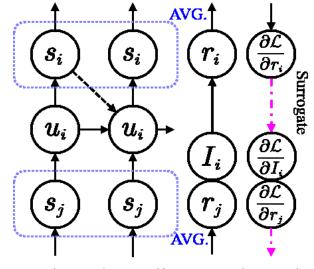
Method

Rate Gradient Approximation Attack

• Since well-trained SNNs are all rate-encoded at each layer, we can approximate the backward pass of SNNs using only the average firing rate over time-steps to generate effective gradients.



BPTT-based Gradient Backward [1]



RGA-based Gradient Backward

Speaker: Tong Bu

2023/6/2

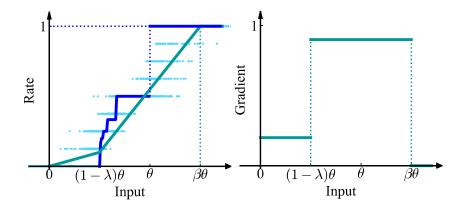
Method

Rate Gradient Surrogate function

We use the static R-I curve, which refers to the relationship between the input current and output firing rate when the input is constant, as the approximation function.

$$\frac{\partial r_i}{\partial I_i} = \begin{cases} \gamma, & 0 \leqslant I_i \leqslant (1-\lambda)\theta \\ \frac{1-\gamma\theta+\gamma\theta\lambda}{(\beta+\lambda-1)\theta}, & (1-\lambda)\theta < I_i \leqslant \beta\theta \\ 0, & I_i > \beta\theta \text{ or } I_i < 0 \end{cases}$$

 λ is the leaky parameter, β and γ are the smooth parameter which prevent the gradient to be zero or infinity. When λ is set to 1, this function will degenerate into the surrogate function for IF neurons.



Surrogate function and deviation for LIF neuron

Speaker: Tong Bu

Method

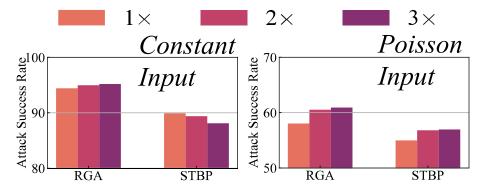
Time extended Attack

 Time Extended attack is to generate more effective adversarial samples by increasing the inference time of SNNs. Time Extended Attack can generate stronger adversarial examples.

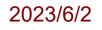
Possion Attack

 For Poisson input SNN, we can regard it as a combined structure of a Poisson encoder and an end-to-end SNN receives spike input. We can consider the Poisson encoder as a random transformation and use a straight through estimator to attack this random transformation.

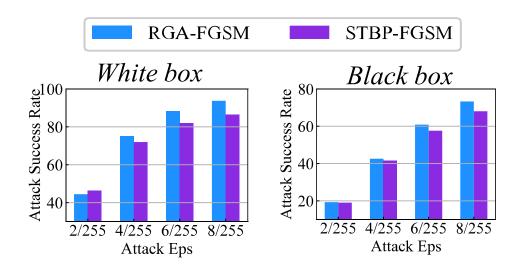
$$\frac{\partial \text{Poisson}(x)}{\partial x} \approx \frac{\partial \mathbb{E}_x \left(\text{Poisson}(x) \right)}{\partial x} = 1$$



Time extended attack increase the attack success rate



Experiments



The attack success rate change with respect to the attack strength for VGG-11 model on the CIFAR-10 dataset. The RGA attack is more effective than STBP attack.

The white box attack success rate changes with respect to the leaky parameter of the spiking neuron. This experiment is conducted on the CIFAR-10 dataset with VGG-11.

100



Attack Success Rate 95 90 **ANN** Baseline 85 80 RGA-FGSM STBP-FGSM 75 0.8 0.9 0.6 0.7 1.0 0.5 Leaky Parameter

Experiments

Architecture	Dataset	Input	Т	λ	TE	Attack	Clean Acc.	White Box Attack		Black Box Attack	
								ASR. (STBP)	ASR. (RGA)	ASR. (STBP)	ASR. (RGA)
VGG-11	CIFAR-10	Direct	8	1.0	-	FGSM	93.06	86.2777	93.7352	68.0314	73.2646
VGG-11	CIFAR-10	Direct	8	1.0	$2 \times$	FGSM	93.06	86.0735	94.7346	64.8399	73.6192
VGG-11	CIFAR-10	Direct	8	1.0	-	PGD	93.06	99.4949	99.8281	86.4604	87.1266
VGG-11	CIFAR-10	Direct	16	1.0	-	FGSM	93.03	85.3273	92.4218	65.7960	73.1269
VGG-11	CIFAR-10	Direct	16	1.0	-	PGD	93.03	99.3658	99.8388	85.5853	87.4234
VGG-11	CIFAR-10	Poisson	16	1.0	-	FGSM	86.72	54.9798	58.0328	40.8673	44.2259
VGG-11	CIFAR-10	Poisson	16	1.0	$2 \times$	FGSM	86.72	56.8106	60.5296	42.8440	46.9085
VGG-11	CIFAR-10	Poisson	16	1.0	-	PGD	86.72	51.9022	57.1412	37.0917	41.1887
VGG-11	CIFAR-10	Direct	8	0.5	-	FGSM	91.48	91.7140	93.6270	77.7656	79.6458
VGG-11	CIFAR-10	Direct	8	0.5	-	PGD	91.48	99.8251	99.7704	93.6817	93.0367
VGG-11	CIFAR-10	Direct	8	0.9	-	FGSM	93.03	89.9065	94.4104	73.4494	77.2761
VGG-11	CIFAR-10	Direct	8	0.9	-	PGD	93.03	99.7313	99.8280	91.7661	91.3899
ResNet-17	CIFAR-10	Direct	8	0.9	-	FGSM	93.04	84.2433	92.9278	67.1109	80.1053
ResNet-17	CIFAR-10	Direct	8	0.9	-	PGD	93.04	99.9248	100.000	92.0034	97.5172
VGG-11	CIFAR-100	Direct	8	0.9	-	FGSM	73.28	92.8766	94.7189	80.8952	84.2658
VGG-11	CIFAR-100	Direct	8	0.9	-	PGD	73.28	99.7544	99.8499	92.2353	92.0579
ResNet-17	CIFAR-100	Direct	8	0.9	-	FGSM	72.05	85.6627	92.0611	74.2956	81.1936
ResNet-17	CIFAR-100	Direct	8	0.9	-	PGD	72.05	99.5836	99.8890	87.6336	95.2949
VGG-11	CIFAR10-DVS	Frame	10	0.9	-	FGSM	77.00	59.5084	59.5607	48.4967	47.9275

Results of RGA based attack and STBP based attack on different type of SNNs. The better of the two is bolded.

Conclusion

- Benchmark for future research on SNN adversarial robustness.
- Lower time cost property showing potential on adversarial training.
- The current rate-coded SNN is not secure, highlighting the need for exploring SNNs utilizing complex neurons and other neuronal codings.

References

[1] HIRE-SNN: Harnessing the Adversarial Robustness of Energy-Efficient Deep Spiking Neural Networks via Training with Crafted Input Noise. *ICCV*. 2021.
[2] Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-linear Activations. *ECCV*. 2020.

Thanks for your attention

Peking University

Email: putong30@pku.edu.cn yuzf12@pku.edu.cn