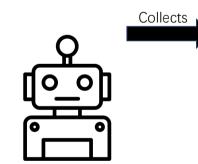


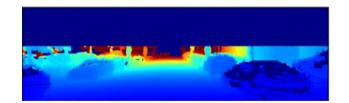
PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection

Anthony Chen^{1,2,*} · Kevin Zhang^{1,2,*} · Renrui Zhang³ Zihan Wang^{1,2} · Yuheng Lu^{1,2,4} · Yandong Guo⁵ · Shanghang Zhang^{1,2,†}

CVPR2023 Paper Tag: TUE-PM-110

¹National Key Laboratory for Multimedia Information Processing
²Peking University, ³The Chinese University of Hong Kong,
⁴Wukong Lab, iKingtec, ⁵Beijing University of Posts and Telecommunications

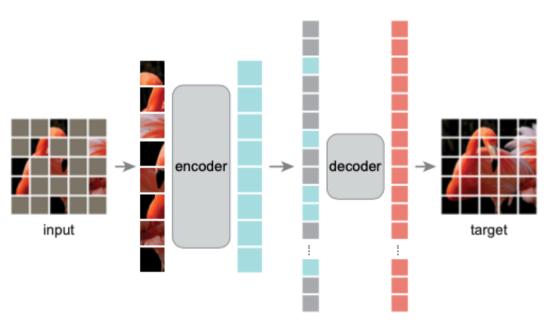

Background


• Unlabeled point cloud and image data

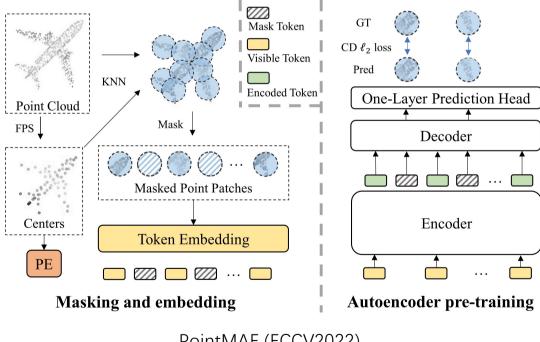
Contribution

- We propose a novel multi-modal self-supervised pretraining scheme on unlabeled point cloud and image data.
- We first extend Masked Autoencoders (MAE) from image pretraining to point cloud & image multi-modal pretraining with three novel cross-modal interaction designs, including <u>a complementary cross-</u> modal masking strategy, <u>a modal shared-decoder</u>, and <u>a cross-modal</u> reconstruction task.
- Our pretrained models boosts performance of 2D & 3D detectors by a large margin.

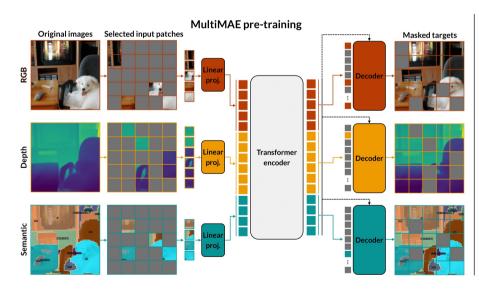
• Naturally paired point cloud and image data collected by RGBD sensor

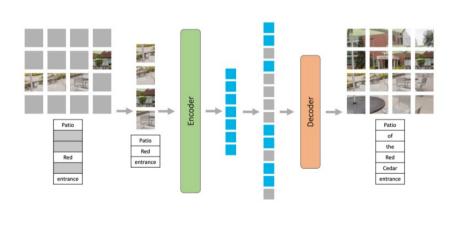


Paired



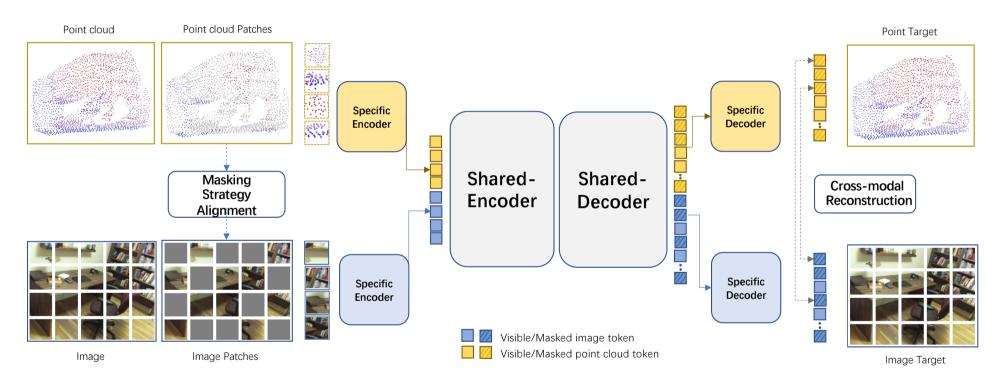
- A suitable self-supervised method
- Contrastive Methods? No
- Masked Autoencoders? Yes


• Masked Autoencoders on Point cloud & Image pretraining not yet exist



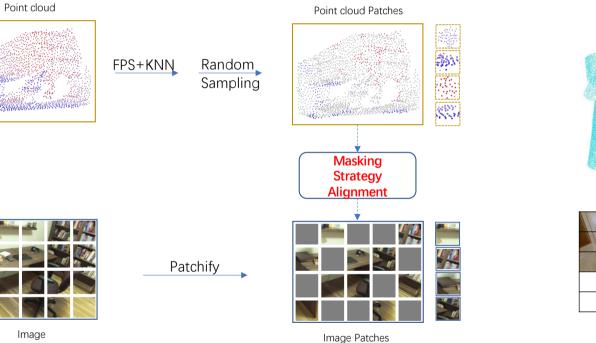
PointMAE (ECCV2022)

Current Multi-modal Masked Autoencoders methods are lack of modality interactions

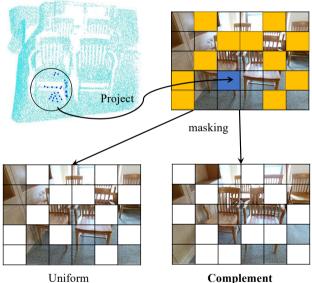


MultiMAE (ECCV2022)

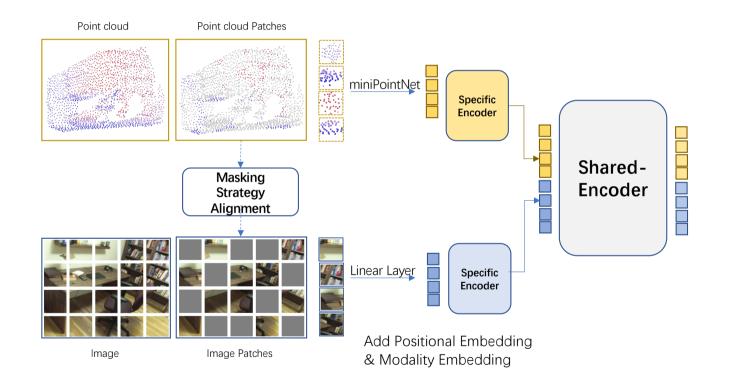
МЗАЕ



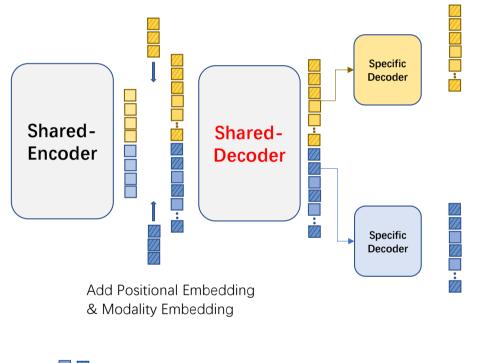
Methods Overview



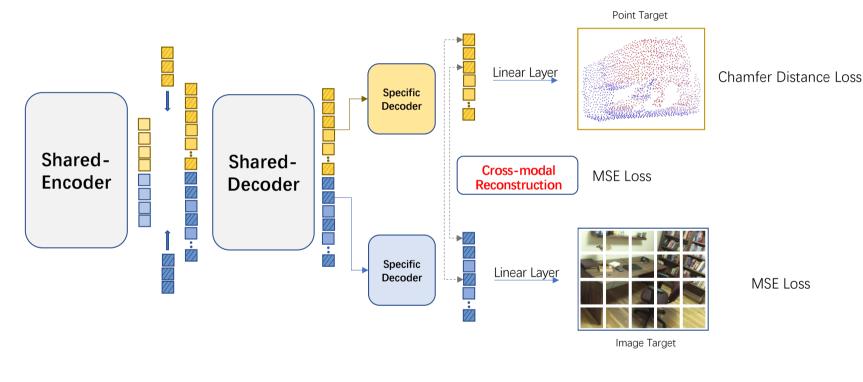
Step1: Embedding & Masking



Masking Strategy Alignment



Step2: Encoding


Step3: Decoding

Visible/Masked image tokenVisible/Masked point cloud token

Step4: Reconstructing

Visible/Masked image token Visible/Masked point cloud token

- Unsupervised Pretraining on Point Cloud & Image dataset
 - Dataset: SUNRGB-D
 - Epochs: 400
- Downstream Finetuning
 - Dataset: SUNRGB-D, ScanNetV2, KITTI, CIFAR-FS, miniImageNet, FC100
 - Baseline: DETR, 3DETR, MonoDETR, GroupFree3D
 - Tasks: 2D/3D Object Detection, Few-shot Image Classification

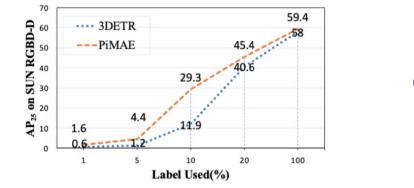
• 3D Object Detection

		SUN RGB-D		Scan	NetV2
Methods	Pre-trained	AP_{25}	AP_{50}	AP_{25}	AP_{50}
DSS [52]	None	42.1	-	15.2	6.8
PointFusion [61]	None	45.4	-	-	-
3D-SIS [23]	None	-	-	40.2	22.5
VoteNet [43]	None	57.7	32.9	58.6	33.5
3DETR [39]	None	58.0	30.3	62.1	37.9
+Ours(from scratch)	None	58.7	31.7	59.7	40.0
+Ours	SUN RGB-D	59.4(+1.4)	33.2(+2.9)	62.6(+0.5)	39.4(+1.5)
GroupFree3D [35]	None	63.0	45.2	67.3	48.9
+Ours(from scratch)	None	61.2	44.7	65.5	47.4
+Ours	SUN RGB-D	64.6(+1.6)	46.2(+1.0)	67.6(+0.3)	49.7(+0.8)

- 2D Object Detection on ScanNetV2
- Monocular 3D Object Detection on KITTI (Out of Distribution data)

	Methods	AP_{50}	AP_{75}	AP
	*DETR [<mark>5</mark>]	39.8	26.2	25.3
	+ PiMAE	46.5(+6.7)	30.3(+4.1)	29.5(+4.2)
Me	ethods	Easy	Mod.	Hard
	IonoDETR [66	[] 23.1	17.3	14.5
	PiMAE	26.6(+3.	5) 18.8(+1.	5) 15.5(+1.0)

• Few-shot Image Classification

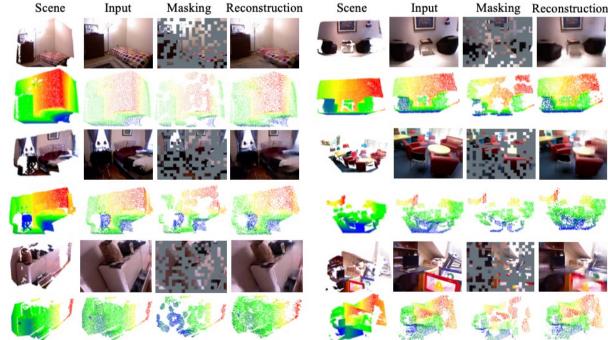

	CIFAR-FS 5-way		FC100 5-way		miniImageNet 5-way	
Method	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MAML [12]	58.9	71.5	-	-	48.7	63.1
Matching Networks [55]	-	-	-	-	43.6	55.3
Prototypical Network [50]	55.5	72.0	35.3	48.6	49.3	68.2
Relation Network [53]	55.0	69.3	-	-	50.4	65.3
CrossPoint [1]	64.5	80.1	-	-	-	-
PiMAE From Scratch	62.4	76.6	37.3	50.5	50.1	66.7
PiMAE Pre-trained	66.9	80.7	39.0	53.3	55.3	70.2

• Ablation Study (Masking Strategy¹, Reconstruction Target², Modality Influence³, Data Efficiency⁴...)

Masking Strategy	AP_{25}	AP_{50}
Random	58.0	32.9
Uniform	58.1	32.6
Complement	59.0	33.0

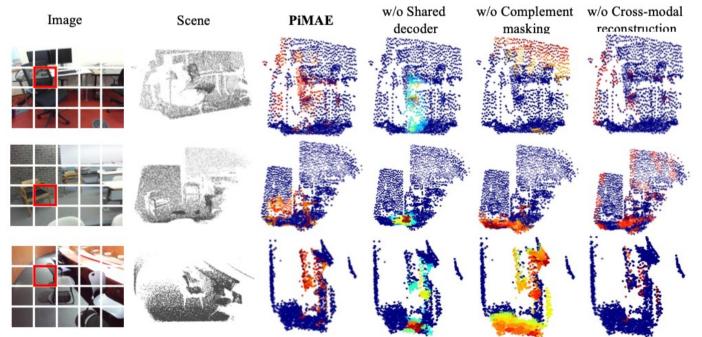
Point Cloud			RGB	AP_{25}	AP_{50}
3D Geo	2D feat	2D pix	2D pix	711 25	211 50
~			\checkmark	59.0	33.0
\checkmark		\checkmark	\checkmark	58.0	31.6
\checkmark	\checkmark		\checkmark	59.4	33.2

	3D Object Detection		Few-shot image classification		
Input	AP_{25}	AP_{50}	5-way 1-shot	5-way 5-shot	
RGB	-	-	66.3	79.5	
Geo	58.4	32.3	-	-	
RGB+Geo	59.4	33.2	66.9	80.7	

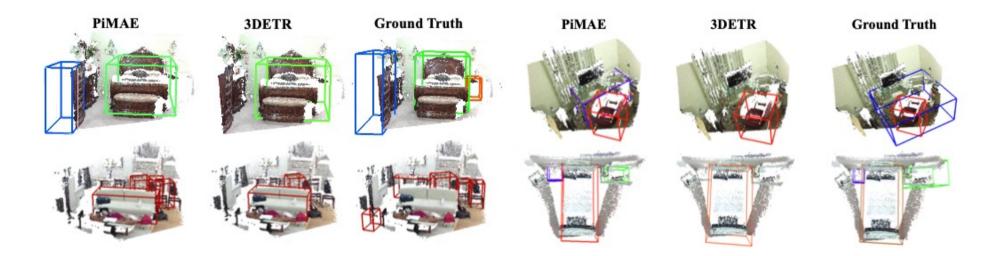

 Ablation Study (Masking Strategy¹, Reconstruction Target², Modality Influence³, Data Efficiency⁴...)

Encoder	Decoder	AP_{25}	AP_{50}	Mask Ratio $ AP_{25} $	AP_{50}
3+3	0+3	58.0	30.2	50% 58.7	33.1
3+3	1+2	59.4	33.2	60% 59.4	33.2
3+3	1+3	58.1	32.8	70% 58.4	33.0
2+2	1+2	57.5	30.8	80% 57.5	32.4

Visualization


Mask Reconstruction, Cross-modal Attention Features, 3D Object
Detection
Scene Input Masking Reconstruction Scene Input Masking Reconstruction

Visualization


• Mask Reconstruction, Cross-modal Attention Features, 3D Object Detection

Visualization

• Mask Reconstruction, Cross-modal Attention Features, 3D Object Detection

Conclusion

- We are the first to explore pre-training MAE with point cloud and RGB modalities interactively with three novel schemes, including <u>a</u> <u>complementary cross-modal masking strategy</u>, <u>a modal shared-</u> <u>decoder</u>, and <u>a cross-modal reconstruction task</u>.
- In our extensive experiments and ablation studies performed on datasets of both modalities, we discover that PiMAE has great potential, improving multiple baselines and tasks.

thanks for watching!

Anthony Chen Contact: antonchen@pku.edu.cn