

ProD: Prompting-to-disentangle Domain Knowledge for Cross-domain Few-shot Image Classification

Tianyi Ma, Yifan Sun, Zongxin Yang, Yi Yang

University of Technology Sydney

Baidu Inc., Zhejiang University

Cross-Domain Few-Shot Image Classification

 Training the model on one / multiple training domain (s).

 When inference, tuning the model with limited samples (i.e. 5 or 25) from a different domain.

Key Problems of the Task

• Domain Generalization: A more general model that absorbs domain-general knowledge from the training domain (s) effectively.

 Domain Adaptation: A model that is easy to adapt to a novel domain with only limited samples for finetuning.

UTSOur Solution: *Prompting-to-Disentangle*

 We take advantage of domain-general knowledge and domain-specific knowledge in regard to generalization and adaptation problems, respectively, with the Domain-General (DG) and Domain-Specific (DS) Prompts.

Visual Prompt

Standard Prompt

- Prompts are the vectors that are attached to the input features to modify the mapping of the pre-trained model.
- Different prompts are trained regarding different downstream tasks.

Prompt in ProD

- Prompts vectors and the full model are trained simultaneously in the training phase.
- Trainable prompt parameters are fixed during the inferences phase
- DS and DG prompts are trained for the same classification task by absorbing domain-general and domain-specific knowledge, respectively.

Model Overview

Överall Loss

- Training Phase Loss:
 - $\mathcal{L} = \mathcal{L}_N + \mathcal{L}_G + \mathcal{L}_S$
- Inference Phase Tuning Loss:
 - $\mathcal{L} = \mathcal{L}_G + \mathcal{L}_S$
 - Inference Phase, \mathcal{L}_G and \mathcal{L}_S are generated from new classification heads

Effectiveness of ProD

÷

UTS

Methods	CUB	CARS	Plantae	Places
RelationNet [28]	35.21 ± 0.46	30.12 ± 0.49	31.99 ± 0.51	49.79 ± 0.57
MatchingNet [32]	42.28 ± 0.61	28.91 ± 0.56	33.02 ± 0.56	48.53 ± 0.62
RelationNet+LFT [29]	48.10 ± 0.62	32.26 ± 0.58	35.21 ± 0.59	51.02 ± 0.56
MatchingNet+LFT [29]	43.38 ± 0.58	30.68 ± 0.59	35.10 ± 0.54	52.63 ± 0.55
RelationNet+ATA [35]	48.49 ± 0.61	31.92 ± 0.58	33.62 ± 0.49	51.00 ± 0.50
DSL [14]	50.15 ± 0.80	37.13 ± 0.69	41.17 ± 0.80	53.16 ± 0.88
Baseline	48.56 ± 0.72	33.15 ± 0.64	37.94 ± 0.71	49.81 ± 0.69
ProD	53.97 ± 0.71	38.02 ± 0.63	42.86 ± 0.59	53.92 ± 0.72

Table 1. Comparison with the state of the arts on 5-way 1-shot task.

	-		•	
Methods	CUB	CARS	Plantae	Places
RelationNet	51.10 ± 0.62	38.26 ± 0.58	62.99 ± 0.62	46.01 ± 0.57
MatchingNet	57.21 ± 0.63	36.98 ± 0.56	62.83 ± 0.62	43.68 ± 0.55
RelationNet+LFT	65.02 ± 0.55	43.51 ± 0.51	50.48 ± 0.46	67.34 ± 0.52
MatchingNet+LFT	61.44 ± 0.56	43.12 ± 0.52	48.49 ± 0.51	65.09 ± 0.48
RelationNet+ATA	59.42 ± 0.48	42.99 ± 0.42	45.51 ± 0.51	67.10 ± 0.41
NSAE [21]	68.17 ± 0.54	54.77 ± 0.56	59.51 ± 0.55	70.93 ± 0.54
DSL	73.57 ± 0.65	58.53 ± 0.73	62.10 ± 0.75	74.10 ± 0.72
Baseline	72.32 ± 0.77	53.17 ± 0.71	60.05 ± 0.69	69.13 ± 0.60
ProD	79.19 ± 0.59	59.49 ± 0.68	65.82 ± 0.65	$\mid 75.00 \pm 0.72$

Table 2. Comparison with the state of the arts on 5-way 5-shot task.

Effectiveness of ProD

Methods	ChestX	ISIC	EuroSAT	CropDisease
Transductive Ft [6]	26.79	49.68	81.76	90.64
ConFeSS [3]	27.09	48.85	84.65	88.88
RDC-FT [9] ⁻	25.48	49.06	84.67	93.55
ProD	28.79	50.57	85.09	90.41

Table 4. Comparison with the state of the arts on 5-way 5-shot task on newly proposed datasets.

Ablations

		Mathada	CUB		
		Wiethous	1-shot	5-shot	
Effectiveness		Basel.	48.56 ± 0.59	72.32 ± 0.67	
of DG prompt neutralization	Basel. + DG	51.89 ± 0.63	75.12 ± 0.69		
	Basel. + DS	51.48 ± 0.71	74.91 ± 0.68		
	Basel. + DG + DS	52.69 ± 0.66	77.63 ± 0.74		
	Basel. + DG + \mathcal{L}_N	53.08 ± 0.74	78.65 ± 0.68		

Table 3. Evaluation of key components: DG prompt (DG), neutralizing loss (\mathcal{L}_N), and DS prompt (DS).

	Mathada	CUB		
	wiethous	1-shot	5-shot	
Effectiveness	Basel.	48.56 ± 0.59	72.32 ± 0.67	
of local 🧪	Basel. + DS (global)	50.39 ± 0.71	73.87 ± 0.66	
classification ≻	Basel. + DS (local)	51.48 ± 0.71	74.91 ± 0.68	
for DS prompt	ProD (global)	52.08 ± 0.74	77.65 ± 0.68	
	ProD (local)	53.97 ± 0.71	79.19 ± 0.63	

Table 4. Comparison between the local and global classification heads on the DS prompt.

Informa a Instant	CU		
Interence Input	1-shot	5-shot	
Feature Token	51.51 ± 0.72	76.13 ± 0.68	
DG	53.01 ± 0.74	78.17 ± 0.61	Using DG and DS
DS	52.07 ± 0.69	77.64 ± 0.63	prompt output
DG+DS	53.97 ± 0.71	79.19 ± 0.63	only for inference
DG+DS+Feature Token	52.18 ± 0.75	78.04 ± 0.72	achieves the
			highest accuracy

Table 5. Comparison between different features for inference with a complete ProD model.

Ablations

Computational Cost

Method	Size	CUB 5-shot
Res10	5.3M	68.98 ± 0.81
Res18	11.7M	72.39 ± 0.84
Basel. (Res10 + Trans)	8.5M	72.32 ± 0.77
ProD (Res10 + Trans + Prompt)	8.6M	79.19 ± 0.59

Table 6. Analysis of the computational efficiency. "Res10", "Res18" and "Trans" denote ResNet-10, ResNet-18 and the transformer head, respectively.

Thank You

