

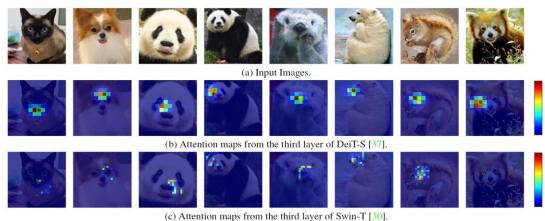
STViT: Vision Transformer with Super Token Sampling

Huaibo Huang^{1,2}, Xiaoqiang Zhou^{1,4}, Jie Cao^{1,2}, Ran He^{1,2,3*}, Tieniu Tan^{1,2,4,5}

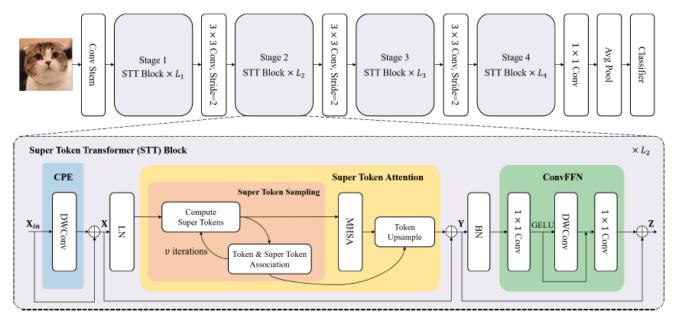
¹MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences, China
²2School of Artificial Intelligence, University of Chinese Academy of Sciences, China
³School of Information Science and Technology, ShanghaiTech University, China
⁴University of Science and Technology of China, ⁵Nanjing University

Key Milestones of Transformer

Foundation models in NLP and CV:


				l							
2017.6 Transformer 2			2020.5 GPT-	-3	2020.10 <mark>ViT</mark>		2021- Now <mark>ViT Variants</mark>				
\langle		Solely based on a mechanism, the T proposed and sho performance on N	ransformer is ows great	A huge transfo 170B paramet big step towar NLP model.	ters, takes a		mer architectures visual recognition.		ViT models, e.g., DeiT, PVT, prmer, OrthoT (our group), r group)		
	Before 2018		2018.10 BERT	-	2020.05 DETR		End of 2020 IPT/	CLIP	2022-Now Stable Diffusion, ChatGPT		
	local feature: I sparse rep.: ha (our group) CNN: AlexNet, LightCNN (our	alf-quadratic ResNet,	s.		A simple yet effective framework for high-level vision by viewing object detection as a direct set prediction problem		Applications of transformer model on low-level vision, segmentation and multimodality tasks, respectively.		Some breakthrough transformer models for practical applications, such as AIGC,		

The vision Transformer models are marked in red.

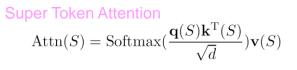

- **Task:** general vision Transformer backbone design.
- **Applications**: image classification, object detection, instance segmentation and semantic segmentation, etc.
- Research Highlight:
 - a general vision transformer backbone, STViT,
 - access efficient and effective global context modeling at the early stages of a neural network

Motivation

 Existing methods: suffer from high redundancy in capturing local features for shallow layers. Local self-attention or early-stage convolutions sacrifice the capacity to capture long-range dependency

- Challenge: Can we access efficient and effective global context modeling at the early stages of a neural network?
- We draw inspiration from the design of superpixels, and propose a simple yet strong super token attention (STA) mechanism with three steps: 1) Super Token Sampling, 2) Self-Attention for Super Tokens, and 3) Token Upsampling

The architecture of Super Token Vision Transformer (STViT).


Model	Blocks	Channels	Heads	Params	FLOPs
	[3,5,9,3]	[64,128,320,512]	[1,2,5,8]	25M	4.4G
	[4,6,14,6]	[96,192,384,512]	[2,3,6,8]	52M	9.9G
	[4,7,19,8]	[96,192,448,640]	[2,3,7,10]	95M	15.6G

Architecture variants of STViT

Token & Super Token Association

$$Q^t = \text{Softmax}(\frac{XS^{t-1^{\text{T}}}}{\sqrt{d}})$$

Super Token Update $S = (\hat{Q}^t)^{\mathrm{T}} X$

Token Upsampling TU(Attn(S)) = QAttn(S)

(a) Input Image

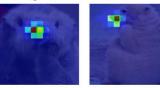
(b) Initial Super Tokens (c) L

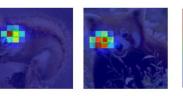
(c) Learned Super Tokens

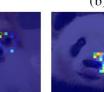
Visualization of super tokens from initial grid to learned ones.

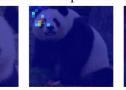
Method

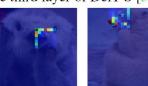
access efficient & effective global context modeling at early stages



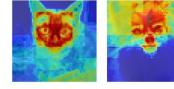

(a) Input Images.

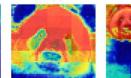


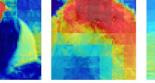


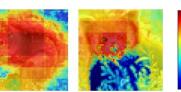



(b) Attention maps from the third layer of DeiT-S [37].









(c) Attention maps from the third layer of Swin-T [30].

(d) Attention maps from the third layer of STViT-S (Ours).

Visualization of early-stage attention maps for different vision transformers

Experiments

Model Size	Model	#Param	Flops	Throughput	Test Size	Top-1
small model size (∼25M)	ConvNeXt-T [31] DeiT-S [37] PVT-S [41] Swin-T [30] CoAtNet-0 [9] Focal-T [49] DAT-T [45] CSwin-T [12] UniFormer-S [25] MPViT-S [24] Ortho-S [19] CMT-S [15] STViT-S CVT-13 [44] CaiT-xs24 [38]	28M 22M 25M 29M 29M 29M 29M 23M 24M 23M 24M 25M 25M 20M 27M	4.5G 4.6G 3.8G 4.2G 4.2G 4.9G 4.6G 4.3G 4.2G 4.7G 4.5G 4.0G 4.4G 16.3G 19.3G	720 922 712 943 323 575 515 824 352 435 481 564	224 224 224 224 224 224 224 224 224 224	82.1 79.9 79.8 81.3 81.6 82.2 82.0 82.7 82.9 83.0 83.4 83.5 83.6 83.0 83.8
	CoAtNet-0 [9] CSwin-T [12] STViT-S	25M 23M 25M	13.4G 14.0G 14.1G	262 204 188	384 384 384	83.9 84.3 85.0
medium model size (∼50M)	ConvNeXt-S [31] PVT-L [41] Swin-S [30] CaiT-s24 [38] CoAtNet-1 [9] Focal-S [49] CrossFormer-B [42] CSwin-S [12] DAT-S [45] UniFormer-B [25] Ortho-B [19] MViTv2-B [26] CMT-B [15] STViT-B CaiT-s24 [38] CSwin-S [12] CoAtNet-1 [9] MViTv2-B [26]	50M 61M 50M 47M 42M 51M 52M 35M 50M 50M 50M 50M 52M 46M 52M 47M 35M 42M 52M	8.7G 9.8G 8.7G 9.4G 8.4G 9.1G 9.2G 6.9G 9.0G 8.3G 9.0G 8.3G 9.3G 9.3G 9.3G 22.0G 22.0G 27.4G 36.7G	404 321 406 326 471 191 377 315 312 375 286 250 259 286 60 128 124 - 95	224 224 224 224 224 224 224 224 224 224	83.1 81.7 83.0 82.7 83.3 83.5 83.4 83.6 83.7 83.9 84.0 84.5 84.5 84.5 84.3 85.0 85.1 85.6
large model size (~100M)	STViT-B ConvNeXt-B [31] DeiT-B [37] Swin-B [30] CaiT-s48 [38] Focal-B [49] CrossFormer-L [42] DAT-B [45] CoAtNet-2 [9] CSwin-B [12] Ortho-L [19] MPViT-B [24] CMT-L [15] STViT-L Swin-B [30] CaiT-s48 [38] CSwin-B [12] CoAtNet-2 [9] STViT-L	52M 89M 86M 90M 90M 92M 88M 75M 78M 88M 75M 75M 95M 88M 90M 78M 75M 95M	31.5G 15.4G 17.5G 15.4G 18.6G 16.0G 16.1G 15.8G 15.7G 15.0G 15.4G 19.5G 15.6G 47.0G 63.8G 47.0G 63.8G 49.7G	252 298 258 162 136 246 211 298 216 180 185 192 85 30 69 88 65	304 224 224 224 224 224 224 224 224 224 2	86.0 83.8 81.8 83.3 83.5 83.8 84.0 84.1 84.2 84.3 84.8 85.3 84.2 85.3 84.2 85.5 85.5 85.7 86.4

ImageNet-1K COCO ADE20K Model **FLOPs** AP^b AP^m #Param Acc. mIoU DeiT-S 22M 4.6G 79.9% ---Swin-T 42.2 28M 4.5G 81.3% 39.1 44.5 3.97G 43.6 STA-4stage 24.1M 82.3% 40.1 46.0 + Conv Stem 24.2M 4.26G 82.6% 44.6 41.1 46.9 4.29G 82.9% 25.2M 44.6 41.2 47.0 + Projection + CPE 25.3M 4.30G 83.3% 46.8 42.5 47.7 w/o CPE, + APE 24.2M 4.26G 83.1% 45.2 41.5 47.3 4.29G 83.2% 41.8 47.5 w/o CPE, + RPE 25.3M 45.6 + ConvFFN 25.4M 4.37G 83.6% 47.6 43.1 48.6 w/o shortcut 25.4M 4.37G 83.4% 47.5 43.0 48.4

Ablations of STViT

Backbone	#Param	FLOPs (G)	mIoU (%)	MS mIoU (%)
Swin-T [30]	60	945	44.5	45.8
CSWin-T [12]	60	943 959	49.3	43.8 50.7
UniFormer-S [25]	52	1008	47.6	48.5
STViT-S	54	926	48.6	49.0
Res101 [17]	86	1029	-	44.9
Twins-B [7]	89	1020	47.7	48.9
Swin-S [30]	81	1038	47.6	49.5
Focal-T [49]	85	1130	48.0	50.0
CrossFormer-B [42]	84	1079	49.2	50.1
UniFormer-B [25]	80	1106	49.5	50.7
CSWin-S [12]	65	1027	50.4	51.5
STViT-B	80	1036	50.7	51.9
Swin-B [30] [30]	121	1188	48.1	49.7
Focal-B [49] [49]	126	1354	49.0	50.5
CSWin-B [12]	109	1222	51.1	52.2
STViT-L	125	1151	52.4	53.2

Semantic segmentation with Upernet on ADE20K

Performance comparison on ImageNet-1K classification

Daakhana	#Param	FLOPs	Mask R-CNN $1 \times$ schedule						Mask R-CNN $3 \times$ + MS schedule					
Backbone	(M)	(G)	AP^{b}	AP_{50}^b	AP_{75}^{b}	AP^m	AP_{50}^m	AP_{75}^m	AP^b	AP_{50}^b	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^m
Res50 [17]	44	260	38.0	58.6	41.4	34.4	55.1	36.7	41.0	61.7	44.9	37.1	58.4	40.1
PVT-S [41]	44	245	40.4	62.9	43.8	37.8	60.1	40.3	43.0	65.3	46.9	39.9	62.5	42.8
Swin-T [30]	48	264	42.2	64.6	46.2	39.1	61.6	42.0	46.0	68.2	50.2	41.6	65.1	44.8
Focal-T [49]	49	291	44.8	67.7	49.2	41.0	64.7	44.2	47.2	69.4	51.9	42.7	66.5	45.9
CMT-S [15]	45	249	44.6	66.8	48.9	40.7	63.9	43.4	48.3	70.4	52.3	43.7	67.7	47.1
UniFormer-S [25]	41	269	45.6	68.1	49.7	41.6	64.8	45.0	48.2	70.4	52.5	43.4	67.1	47.0
STViT-S	44	252	47.6	70.0	52.3	43.1	66.8	46.5	49.2	70.8	54.4	44.2	68.0	47.7
Res101 [17]	63	336	40.4	61.1	44.2	36.4	57.7	38.8	42.8	63.2	47.1	38.5	60.1	41.3
PVT-M [41]	64	302	42.0	64.4	45.6	39.0	61.6	42.1	44.2	66.0	48.2	40.5	63.1	43.5
Swin-S [30]	69	354	44.8	66.6	48.9	40.9	63.4	44.2	48.5	70.2	53.5	43.3	67.3	46.6
Focal-S [49]	71	401	47.4	69.8	51.9	42.8	66.6	46.1	48.8	70.5	53.6	43.8	67.7	47.2
DAT-S [45]	69	378	47.1	69.9	51.5	42.5	66.7	45.4	49.0	70.9	53.8	44.0	68.0	47.5
UniFormer-B [25]	69	399	47.4	69.7	52.1	43.1	66.0	46.5	50.3	72.7	55.3	44.8	69.0	48.3
STViT-B	70	359	49.7	71.7	54.7	44.8	68.9	48.7	51.0	72.3	56.0	45.4	69.5	49.3
Swin-B	107	496	46.9	-	-	42.3	-	-	48.5	69.8	53.2	43.4	66.8	46.9
CSWin-B	97	526	48.7	70.4	53.9	43.9	67.8	47.3	50.8	72.1	55.8	44.9	69.1	48.3
STViT-L	114	470	50.8	72.5	56.3	45.5	69.7	49.1	51.7	73.0	56.9	45.9	70.4	49.9

Object detection and instance segmentation with Mask R-CNN on COCO val2017

STViT: Vision Transformer with Super Token Sampling

Huaibo Huang, Xiaoqiang Zhou, Jie Cao, Ran He, Tieniu Tan

Thanks

Code Link

Group's Homepage